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Abstract - This study explores the use of machine learning and 
multi-objective optimization to improve the catalytic conversion 
of sulfur dioxide to sulfur trioxide, a key process in sulfuric acid 
production and environmental mitigation. A feedforward neural 
network model is employed to predict the sulfur dioxide 
conversion based on the catalyst composition and the prevailing 
operating conditions. Subsequently, multi-objective 
optimization methodologies are employed to identify optimal 
solutions that concurrently maximize conversion and 
productivity while minimizing the associated catalyst costs. Two 
case studies are conducted to determine the optimal 
catalyst/promoter composition and operating conditions for 
sulfuric acid production. The first candidate involves a 
combination of vanadium and potassium, while the second 
focuses on platinum. The study highlights the potential of these 
methodologies to enhance sulfuric acid production efficiency 
and address pollution, contributing to industrial productivity 
and environmental sustainability. 
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1. Introduction 
In the realm of chemical engineering, the core of 

processes often resides in their reactions. Certain 
reactions have garnered heightened focus owing to their 
practicality, significance, and economic viability. Among 
these pivotal reactions within chemical processes lies 
the catalytic conversion of sulfur dioxide (SO2) to sulfur 
trioxide (SO3). The conversion of SO2 has two domains of 
applications: the mitigation of pollution and the 
production of sulfuric acid (H2SO4). This reaction is 
based on the following stoichiometric equilibrium 
expressed by Equation (1): 

 

𝑆𝑂2(𝑔) +
1

2
𝑂2(𝑔) ⇄ 𝑆𝑂3(𝑔) (1) 

 
For the first application, it is uncontested that 

urban population growth has sparked an industrial 
activity boom that has significantly increased the amount 
of air contaminants such as SO2 [1]–[3]. To remove SO2 
emanating from coal-fired power plants and mitigate 
pollution, industries use a variety of flue gas 
desulfurization (FGD) methods. FGD processes are 
essential for reducing air pollution caused by sulfur 
dioxide emissions. FGD processes can broadly be 
classified into two main categories: wet processes and 
dry processes [4]–[7]. Wet processes, the most used 
technologies, involve the utilization of limestone or 
slaked lime slurry as sorbents in spray towers, enabling 
chemical absorption to eliminate SO2. Wet processes can 
eliminate up to 99% of the pollutant, producing a 
significant amount of hazardous material. On the other 
hand, dry processes involve the physical or chemical 
sorption of SO2 on materials such as activated carbon or 
other sorbents, typically implemented in a fixed bed 
configuration [8]–[10]. Through the various 
technologies to remove SO2, some also rely on its 
oxidation [8]–[12].  

For the latter application, the SO2 oxidation is the 
most important step in manufacturing H2SO4, the most-
produced chemical product worldwide [13]–[15]. It is 
used in several applications such as the manufacturing of 
phosphate fertilizers and a variety of other chemicals. It 
plays a role in metal processing, it serves as an 
electrolyte in lead-acid car batteries, and it is employed 
in the petroleum refining industry to remove impurities 
from fuel as well as other refinery products [16]–[18]. 
Using a catalyst bed, SO2 is oxidized to produce SO3 
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(Equation (1)). The oxidation of SO2 is an exothermic 
reversible reaction, influenced by temperature and 
pressure, and is typically performed industrially in an 
adiabatic packed bed reactor [19]–[21]. At temperatures 
exceeding 400°C, the reverse reaction becomes 
progressively favored, leading to a decrease in the 
achievable conversion of SO2 as the temperature 
increases. However, it is worth noting that there is a 
minimum operating temperature of common SO2 
oxidation catalysts, often referred to as the strike 
temperature, which is also around 400°C. Balancing 
these conflicting requirements is achieved through the 
implementation of multistage catalytic reactors and 
inter-stage cooling. In the following process step, slightly 
diluted H2SO4 (usually as 97-98% H2SO4 containing 2-3% 
water) and SO3 are reacted to produce more 
concentrated H2SO4, as given by Equation (2) [22], [23]. 
 
𝑆𝑂3(𝑔) + 𝐻2𝑂(𝑙) → 𝐻2𝑆𝑂4(𝑙)   (2) 

 
The conversion of SO2 to SO3 relies heavily on the 

catalyst performance. While vanadium, platinum, and 
iron-based catalysts have been the primary focus of 
numerous studies, other metals have also been 
considered [24]–[27]. According to the available 
literature, catalysts such as sodium-vanadium, platinum-
palladium, platinum, and platinum-tin are widely 
recognized for their predominant use in FGD. These 
catalysts have demonstrated their effectiveness in 
facilitating the desired chemical reactions involved in the 
removal of SO2 from flue gases [1], [28], [29]. The rate of 
SO2 conversion can be significantly influenced by the 
combination of different metals in varying quantities, 
particularly in promoted or bimetallic catalysts. For 
instance, research has demonstrated that SO2 oxidation 
promoters like alkaline-earth metals, namely potassium, 
sodium, and cesium, strengthen the structure and 
bonding of the catalyst. As a result, vanadium oxide 
based catalysts with promoters exhibit improved 
conversion [30]–[32]. Therefore, in the context of H2SO4 

production, commonly employed catalysts include 
potassium-vanadium, cesium-vanadium, platinum, and 
mixtures containing vanadium combined with other 
compounds and/or promoters such as calcium, copper, 
iron, barium, manganese, and magnesium [33]–[35]. 
Ongoing research and development efforts aim to 
explore new catalyst formulations and modifications, 
enhancing their efficiency and durability in both 
applications.  

The selection and optimization of catalysts play a 
critical role in ensuring effective SO2 oxidation for sulfur 
removal and H2SO4 production [30]. However, due to a 
large number of parameters in any catalytic reaction 
including catalyst properties and operating variables, 
establishing analytical correlations between all these 
variables and the resultant steady-state conversion is 
challenging. Furthermore, the proliferation of diverse 
catalyst types encompassing a wide array of 
compositions exacerbates the difficulty in identifying the 
most optimal catalyst type and composition. In 
addressing this challenge, the integration of machine 
learning (ML) models is promising in elucidating the 
underlying nonlinear relationships between variables 
and in the pursuit of optimal operating conditions, and 
aids in selecting the most suitable catalyst type and 
composition. 

Numerous researchers have employed diverse 
experimental catalytic strategies, varying in operating 
parameters such as temperature, pressure, and 
concentrations of inlet feed gases [27], [36], [37]. 
Nevertheless, there is frequently a paucity of 
comprehensive information regarding the optimal 
catalyst(s) and their corresponding compositions for the 
desired operating conditions [30]. Consequently, robust 
methodologies for handling nonlinear relationships and 
optimization techniques have garnered recent attention. 
ML methodologies, such as artificial neural networks 
(ANNs), present a promising avenue for constructing 
nonlinear models incorporating all relevant variables to 
ascertain the optimal catalyst and its composition, 
thereby enhancing both efficiency and conversion. 
Despite the growing utilization of ML methodologies 
across various disciplines, its application within the 
catalysis domain remains nascent [38]. The major reason 
is the lack of universal datasets in catalytic activities [39]. 
Catalyst development often relies on empirical trial-and-
error methods based on physio-chemical properties, 
necessitating significant time and effort to identify 
optimal solutions. Automated ML approaches have 
demonstrated efficacy in refining models, elucidating 
catalytic mechanisms, and generating innovative 
concepts for catalytic design [38]–[43]. 

This study relies on a comprehensive dataset on 
the catalytic conversion of SO2 [30], updated to 2023, 
with a diverse array of catalysts and operating 
parameters. The dataset, which includes two ranges of 
SO2 mole fractions (below 1% for FGD and above 7% for 
H2SO4 production), is refined for accuracy and 
consistency. An optimal ANN model is identified through 
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meticulous hyperparameter tuning (to optimize the ANN 
model's architecture and parameters) and used within a 
multi-objective optimization (MOO) framework to 
address trade-offs in the conversion process and 
generate the Pareto domain. The study uses the non-
dominated sorting genetic algorithm (NSGA-II) and the 
net flow method (NFM) to identify and rank Pareto-
optimal solutions. This approach integrates advanced 
computational methodologies with chemical 
engineering principles, contributing to efficiency 
enhancement and cost reduction in catalytic processes. 
 

2. Methods 
 This study comprises three primary sections. The 
initial section focuses on the development of an ANN 
model. Within this section, data collection is conducted, 
followed by rigorous preprocessing techniques to ensure 
data integrity. Hyperparameter tuning is subsequently 
employed to optimize the ANN's performance, involving 
the construction and evaluation of multiple ANN models. 

The final model selection is based on the comparative 
performance assessment of each model. The second 
section entails the formulation of three distinct 
objectives, which are framed as a MOO problem. Utilizing 
the NSGA-II, the Pareto domain – a set of solutions 
representing the trade-offs between conflicting 
objectives – is identified. In the third and final section, a 
multi-criteria decision-making approach known as NFM 
is applied to rank the solutions approximating the Pareto 
domain. This method facilitates the identification of the 
optimal solution. The procedural workflow is illustrated 
in Figure 1. 

Each section of this study will be explained in 
detail, providing comprehensive coverage of the 
respective steps involved. Furthermore, the rationale 
behind each methodological choice will be discussed, 
along with its relevance and contribution to the overall 
research objectives. 

 
 

 

 

Figure 1. Flowchart of the complete steps toward the optimization of the catalytic conversion of SO2. 
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2. 1. Artificial Neural Network Model Development 
In 1943, McCulloch and Pitts proposed a 

computational model inspired by the human brain, 
which sparked research on ANNs [44]. ANN models 
have the ability to learn, recognize, and solve complex 
problems. Among the several types of ANNs, 
feedforward neural networks (FFNNs) are particularly 
interesting due to their structural representation as a 
computational model in a network form. This structural 
representation is what allows FFNNs to be a universal 
function approximator, capable of approximating any 
continuous function [45]. The FFNN can address a broad 
range of problems related to pattern recognition and 

prediction. This ability has been embraced by various 
researchers, who have appreciated FFNNs for their 
universal approximation ability [45]–[47]. FFNNs are 
computational models that comprise multiple 
interconnected neurons or nodes, arranged in a layered 
structure, where each layer is connected in a forward 
direction to the preceding layer. These neural networks 
have a specific structural configuration (Figure 2a) and 
are capable of processing information through the 
synaptic links or weights that connect the nodes (Figure 
2b). 

 

   

Figure 2. (A) FFNN with three layers and (B) a sample node of the network. 

The process of supervised learning involves 
minimizing a cost function expressed as the difference 
between the desired output 𝑦𝑖  and the output of the 
model �̂�𝑖 . Various cost functions can be defined for this 
purpose. For example, mean squared error (MSE) is a 
commonly used cost function in regression problems, 
which can be expressed as [45]: 
 

𝑀𝑆𝐸 = 
1

𝑁
∑∑(𝑦𝑖𝑗 − �̂�𝑖𝑗)

2

𝑞

𝑗=1

𝑁

𝑖=1

 (3) 

 
where N is the number of training points and q is the 
number of output neurons.  

There are various conventional derivative-
based methods, such as Quasi-Newton [48], Levenberg-
Marquardt [49], adaptive moment estimation (Adam) 
[50], etc. used to adjust the connection weights to 

minimize the cost function. Adam is a popular algorithm 
for solving complex issues involving a large number of 
variables or data.  

As depicted in Figure 1, the initial step in the 
implementation of an ANN involves defining the 
problem statement. In the context of this project, the 
objective is to construct an ANN model capable of 
predicting the conversion of SO2. Following the problem 
definition, the subsequent step entails the acquisition of 
raw data. While direct experimentation within a specific 
system necessitates considerable resources in terms of 
time, labor, infrastructure, and financial investment, a 
more practical approach involves leveraging existing 
literature, which encompasses a wealth of research 
findings accessible online. Across various domains of 
chemical engineering, extensive experimental data have 
been amassed over numerous decades. However, 
collating this data is a labor-intensive endeavor, 
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requiring a meticulous review of potential sources to 
ascertain their relevance to the project and extract 
pertinent information. 

The inclusion criteria of data from scientific 
articles within the dataset necessitate the 
documentation of catalytic activity tests employing 
heterogeneous catalysts. Furthermore, these articles 
must provide details regarding the experimental 
conditions, encompassing independent variables, as 
well as the outcomes of these tests, represented by 
dependent variables. The dataset thus encompasses a 
spectrum of information including the composition and 
properties of the catalysts (e.g., specific surface area, 
pore characteristics, particle size), synthesis 
methodologies (e.g., calcination parameters such as 
temperature and time), operating conditions including 
temperature, pressure, catalyst mass, inlet volumetric 
flowrate, as well as the mole fractions of O2 and SO2 
within the system. Additionally, the dataset 
incorporates the conversion of SO2 as the system's 
output variable. 

For the dataset preparation, a comprehensive 
screening process was undertaken, considering 152 
literature papers, culminating in the identification of 32 
papers deemed suitable for data extraction. Numerous 

considerations influenced the selection criteria for 
inputs into the final database. Notably, a significant 
challenge arose from the inconsistent reporting of 
information within some of the candidate papers, 
resulting in the omission of certain variables. 
Consequently, catalysts and promoters characterized by 
a paucity of data points and minimal variance were 
excluded from consideration as final inputs. 

Table 1 presents the finalized list of the input 
and output variables within the database. Notably, 14 
active metals and promoters emerged as the preferred 
candidates for inclusion, along with three support 
materials denoted by binary indicators reflecting their 
presence or absence. Furthermore, operating 
parameters such as temperature, pressure, the ratio of 
catalyst weight to volumetric flow rate (W/V), and the 
mole fractions of SO2 and O2 complete the list of input 
variables. The output variable, representing the 
conversion of SO2 to SO3, completes the database 
structure. Although additional variables such as pore 
volume, pore size, and surface area were gathered from 
the literature review, they were not included in the main 
dataset due to the substantial amounts of data not 
reported in many papers. 
 

Table 1. SO2 conversion databank description with 22 input variables and one output variable used to develop the ANN model 
to predict conversion. 

ANN Variables Description Unit Mean Standard deviation Min Max 

Calcium 

Active metal / 
promoter 

Mass fraction 
(%) 

0.088 0.386 0 2.257 

Ceria 
Mass fraction 

(%) 
0.123 0.662 0 4.885 

Cesium 
Mass fraction 

(%) 
1.183 2.936 0 11.05 

Copper 
Mass fraction 

(%) 
0.012 0.003 0 0.024 

Iron 
Mass fraction 

(%) 
0.044 0.189 0 1.832 

Lanthanum 
Mass fraction 

(%) 
0.094 0.687 0 6.826 

Magnesium 
Mass fraction 

(%) 
0.001 0.010 0 0.100 

Manganese 
Mass fraction 

(%) 
0.019 0.118 0 0.750 

Palladium 
Mass fraction 

(%) 
0.022 0.144 0 2 

Platinum 
Mass fraction 

(%) 
0.539 1.497 0 9.091 
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Potassium 
Mass fraction 

(%) 
4.052 5.545 0 18.428 

Sodium 
Mass fraction 

(%) 
0.034 0.384 0 5.463 

Tin 
Mass fraction 

(%) 
0.153 0.473 0 2.200 

Vanadium 
Mass fraction 

(%) 
1.904 2.059 0 8 

Alumina 

Support material 

0 or 1 0.161 0.367 0 1 

Titania 0 or 1 0.065 0.246 0 1 

Silicate 0 or 1 0.775 0.418 0 1 

Temperature 

Operating 
parameter 

°C 457 90 204 799 

Pressure Atm 1.535 1.864 1 10 

W/V kgcat·s/L 4.223 8.819 0.003 28.379 

SO2 Mole fraction (%) 6.022 4.358 0.001 20 

O2 Mole fraction (%) 13.292 5.299 0.03 20.393 

SO2 Conversion Output % 61.187 30.978 0 100 

 

Following the data collection, the subsequent 
stage entails preprocessing to render the raw data 
suitable for their utilization within a ML algorithm. Data 
preprocessing serves to facilitate the management and 
manipulation of complex datasets, a task that often 
necessitates a considerable amount of processing time 
[51]. Despite its pivotal role in model development, data 
preprocessing is occasionally overlooked compared to 
other stages; nevertheless, it typically consumes over 
50% of the total time allocated to data mining 
endeavors [52]. Various techniques are employed in the 
preprocessing phase to enhance the quality of datasets, 
and these techniques will be succinctly discussed in the 
subsequent discussion. 

Data in real-world scenarios often contains 
incompleteness, noise, and inconsistency. Consequently, 
data-cleaning efforts aim to address these issues 
meticulously by identifying outliers and rectifying 
inconsistencies within the dataset [53]. In this study, 
outliers were identified and removed from the dataset. 
Acknowledging the equal significance of all data 
elements, data normalization emerges as an essential 
data transformation technique employed to standardize 
all data elements within a predefined range [54]. This 
normalization process not only expedites the learning 

phase within neural network backpropagation 
algorithms but also mitigates the potential dominance 
of attributes with larger ranges and/or values over 
attributes with smaller ranges and/or values [55]. In 
this work, min/max normalization was used to transfer 
the data to a range between 0 and 1. Furthermore, data 
transformation may serve as an effective strategy for 
reducing the dimensionality of input data, particularly 
when correlations exist among a series of variables. 
Principal component analysis (PCA) stands out as a 
widely adopted method in this regard [56]. Therefore, 
the use of PCA for data reduction was explored. In the 
current case study, given the low level of correlation 
among the input variables and especially for the large 
number of independent catalysts, the PCA did not result 
in a smaller number of input variables and was not 
found useful.  

ML models generally assume datasets are 
complete, but missing values are often encountered 
during data collection [51], [57]. To manage this, various 
data preprocessing techniques, including methods like 
autoassociative neural networks (AANNs), are 
employed for imputing missing data [58]. In this work, 
some missing data included pore size, pore volume, 
surface area, calcination time, temperature, and 
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preparation methods. However, the effectiveness of 
AANNs is influenced by the correlation between 
variables [59]. In this case study, the AANN model 
struggled to accurately predict missing values due to the 
low correlation among features. As a result, the 
variables with missing values were removed from the 
main dataset, despite their recognized importance. 

It is important to stress that to reach the final 
model, the procedure depicted in Figure 1 is not 
achieved in a single pass, but rather through multiple 
iterations. In this investigation, the main effort was 
devoted to the management and validation of the 
databank, especially determining which data points 
from the literature would be useful for inclusion in the 
databank. Initially, all literature data containing the 
necessary information were considered. However, some 
catalysts had a very limited number of instances and 
were removed from the database. Other papers had 
instances with identical inputs but with different 
conversions due to disparities in catalyst properties. In 
this case, the average conversion was calculated for 
similar data points, and this single average value was 
used to replace the redundant data points in the 
database. 

According to Figure 1, the subsequent step 
following preprocessing entails in conducting 
hyperparameter tuning to identify the optimal 
parameters for the ANN model. Enhancing the model's 
performance and minimizing errors necessitate the 
careful selection of the neural network's structure and 
associated parameters [60]. While the number of 
neurons in the input and output layers remains fixed to 
correspond with the model's inputs and outputs, 
respectively, the configuration of intermediate layers 
(hidden layers), as well as the number of neurons within 
each hidden layer, the number of epochs, the batch size, 
the learning rate, the optimizer, and the activation 
functions must be specified. These parameters play a 
pivotal role and can significantly influence model 
performance. Initially, models are constructed with 
parameters based on prior knowledge and expertise, 
with the initial weights assigned as small random 
values. In case of overfitting or underfitting, 
hyperparameter tuning techniques are employed to 
identify optimal parameters, aiming to minimize MSE 
for the validation set. These techniques often leverage 
grid search, random search, Bayesian optimization, and 
many other methodologies [60], [61]. Ultimately, the 
selection of the final model involves a trade-off between 

model simplicity and MSE value, striking a balance to 
achieve satisfactory performance [60]. 

During the hyperparameter tuning phase, a 
series of models were trained using the 5-fold cross-
validation and random search method to optimize 
parameters across two distinct ANN architectures. The 
first architecture consisted of three hidden layers while 
the second had five hidden layers. Throughout this 
process, certain parameters were held constant, namely 
a sigmoid as the activation function, a learning rate of 
0.01, 2000 epochs, and a batch size of 32. The following 
parameters were varied: the number of layers, the 
number of neurons within each layer, and the optimizer 
methods (Adam or Nadam). Numerous models were 
subsequently trained, with variations introduced by 
altering the fixed parameters. 

As depicted in Figure 1, the subsequent 
procedural step is to partition the data records into 
three distinct subsets: the training set, the validation 
set, and the testing set. Different combinations were 
randomly tested, and the best combination was selected 
for the best model. In the subsequent phase depicted in 
Figure 1, the effectiveness of the constructed ANN 
model is assessed utilizing various criteria. 
Performance metrics serve to evaluate the goodness of 
the fit of the ML regression models [62]. The most 
common performance metrics are the root mean 
squared error (RMSE), mean absolute error (MAE), 
MSE, Pearson correlation coefficient, and coefficient of 
determination (R2). In this study, MSE and R2 are used.  

 
2. 2. Multi-Objective Optimization 

In the field of engineering, ML is typically used 
in synergy with an optimization algorithm to determine 
the set of process input variables that optimizes specific 
objective functions to operate chemical processes under 
optimal conditions [63]–[66]. MOO problems are 
optimization problems that must satisfy multiple, often 
conflicting, objectives [28]. A solution is defined as a 
vector of decision variables 𝑋 = {𝑥1,  𝑥2,  𝑥3, … , 𝑥𝑛} 
that optimizes the vector of objective functions 𝐹(𝑋) =
 {𝑓1(𝑋),  𝑓2(𝑋),  𝑓3(𝑋), … , 𝑓𝑀(𝑋)} within a feasible 
region of solutions which may be subjected to equality 
ℎ𝑔(𝑋) and inequality 𝑔ℎ(𝑋) constraints. The decision 

variables are bounded between lower (𝑥𝑚𝑖𝑛) and upper 
(𝑥𝑚𝑎𝑥) limits, which constrain the search space for each 
variable [67]–[69]. This process is mathematically 
represented by Equation (4). 
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𝑀𝑖𝑛 𝐹(𝑋) = {𝑓1(𝑋), 𝑓2(𝑋),⋯ , 𝑓𝑚(𝑋),⋯ , 𝑓𝑀(𝑋)}, 
𝑚 = 1, 2, 3,⋯ ,𝑀 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 
ℎ𝑔(𝑋) = 0 ,   𝑔 = 1, 2, 3,⋯ , 𝐺 

𝐺ℎ(𝑋) ≤ 0 ,   ℎ =  1, 2, 3,⋯ ,𝐻 
𝑥𝑖
𝐿𝐿  ≤  𝑥𝑖  ≤  𝑥𝑖

𝑈𝐿  , 𝑖 = 1, 2, 3,⋯ , 𝑛 

(4) 

where M is the number of objectives. Each of the 
objective functions 𝑓𝑚(𝑋) can be either minimised or 
maximised [70]. A maximization problem can be 
converted into a minimization by negating the objective 
function [71]. With conflicting objectives, improving 
one objective may worsen the other objectives. The 
concept of Pareto optimality can address this issue [71], 
[72] using the dominance relationship in an unbiased 
way to generate a large number of Pareto-optimal 
solutions rather than a single aggregate optimal 
solution. These solutions are referred to as non-
dominated solutions. It is then up to a decision maker to 
select the best one among all Pareto-optimal solutions 
based on his/her preferences [67].  

MOO techniques aim to identify a diverse set of 
solutions that reside on the Pareto front. These 
techniques, particularly the evolutionary MOO 
algorithms, are designed to circumscribe as accurately 
as possible the Pareto domain while overcoming 
challenges such as infeasible regions, local optima, and 
smooth regions of objective functions. Balancing 
computational cost and efficiency is crucial in 
addressing these challenges [73], [74]. Various methods 

are available for solving MOO problems, with multi-
objective evolutionary algorithms (MOEAs) being a 
popular choice [72]–[77]. MOEAs utilize the dominance 
relationships in their quest to uncover Pareto-optimal 
solutions, a strategy shared by other optimization 
methods [78]. While MOEAs are effective in finding 
global optima and demonstrating robustness against 
noise, they have limitations, including potential 
redundancy and significant computational time [79].  

NSGA-II is a popular method within MOEAs. It is 
specially designed to tackle MOO problems and identify 
Pareto-optimal solutions. NSGA-II operates on the 
principles of elitism, an explicit diversity mechanism, 
and prioritization of non-dominated solutions. At each 
generation (t), the parent population (Pt) undergoes 
standard genetic operations such as selection, 
crossover, and mutation to generate the offspring 
population (Qt). These two populations are then merged 
to form a new population (Rt) comprising 2N 
individuals. Rt is segmented into various non-
dominance groups, and the new population of N fittest 
individuals is populated sequentially with points from 
the front with the least number of the domination score 
to fronts with higher domination scores. The selection 
of points in the last front necessary to reach N 
individuals is made in such a way as to maximize 
diversity in the population of solutions using the 
crowding distance criterion. Figure 3 provides a visual 
representation of the process used at each generation 
[71]. 

 
Figure 3. Schematic illustration of the procedure of NSGA-II. 
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In various chemical engineering applications, 
particularly in processes like SO2 oxidation, the 
development of ML models presents an opportunity to 
optimize complex systems by leveraging optimization 
algorithms. In this work, the optimization framework 
aims at maximizing conversion and productivity while 
minimizing catalyst cost, to strike a balance between 
these competing objectives. 

The conversion (X) of SO2, defined in Equation 
(5), is calculated from the ANN model. 
 

𝑋 =
𝐹𝑆𝑂2,𝑖𝑛 − 𝐹𝑆𝑂2,𝑜𝑢𝑡 

𝐹𝑆𝑂2,𝑖𝑛 
 (5) 

 
where 𝐹𝑆𝑂2,𝑖𝑛  and 𝐹𝑆𝑂2,𝑜𝑢𝑡  are the input and output 

molar flowrates of SO2, respectively. The productivity is 
defined as the rate at which the moles of SO2 are 
converted to SO3 per unit time and per unit mass of the 
catalyst expressed by Equation (6). 
 

𝑃 =
𝑦𝑆𝑂2𝑋𝐹𝑖𝑛 

𝑊
 (𝑚𝑜𝑙 𝑆𝑂3/𝑘𝑔𝑐𝑎𝑡 ∙ 𝑠) 

    
(6) 

 
where 𝑦𝑆𝑂2 is the input SO2 mole fraction, Fin is the total 

inlet molar flowrate, and W is the catalyst weight. This 
equation can be transformed in terms of the catalyst 
weight to the volumetric flow rate ratio under standard 
conditions (1 atm, 0oC) as well as expressing 𝑦𝑆𝑂2 and X 

in percentage as per Table 1 and the input to the AAN 
model (Equation (7)). 

𝑃 = 4.462 × 10−6
𝑦𝑆𝑂2𝑋

𝑊 𝑉⁄
 (𝑚𝑜𝑙 𝑆𝑂3/𝑘𝑔𝑐𝑎𝑡 ∙ 𝑠) (7) 

where W/V is the ratio of the weight of the catalyst bed 
and the volumetric flow rate in kgcat·s/L. The third 
objective function is the cumulative cost of catalysts 
used in the process. This objective function involves a 
linear relationship between the mass fractions of 
individual catalysts and their corresponding costs 
(Equation (8)).  
 

𝐶 =∑𝑐𝑖𝑚𝑖

𝑟

𝑖=1

  (8) 

 
where r is the number of catalysts in the databank, 𝑐𝑖 is 
the price of each catalyst and 𝑚𝑖 is the mass fraction of 
each catalyst. The list of prices of the catalysts has been 

obtained using the Bloomberg databank and it is 
reported in Table 2 [80], [81]. 

 
Table 2. Estimated price of each catalyst. 

S.N. Catalyst Symbol Price ($/kg) 
1 Calcium Ca 5 
2 Cerium Ce 4 
3 Cesium Cs 13000 
4 Copper Cu 8 
5 Iron Fe 0.5 
6 Lanthanum La 4 
7 Magnesium Mg 3.5 
8 Manganese Mn 2 
9 Palladium Pd 43500 

10 Platinum Pt 32000 
11 Potassium K 850 
12 Sodium Na 300 
13 Tin Sn 30 
14 Vanadium V 250 

 
2. 3. Multi-Criteria Decision Making 

Once the Pareto domain is established based on 
domination principles (as depicted in Figure 1), the 
subsequent step involves ranking all non-dominated 
solutions. This ranking process requires the input of the 
decision-maker's preferences, which guide the selection 
of solutions according to the chosen ranking method. In 
this study, the NFM, a multi-criteria decision-making 
technique, is employed for ranking all Pareto-optimal 
solutions. The NFM incorporates the decision-maker's 
preferences through the utilization of four factors, 
which are outlined below [15]. 

The first factor involves assigning relative 
weights (Wm) to each criterion or objective 'm', 
indicating their importance. The sum of all relative 
weights must be equal to one. The second factor, known 
as the indifference threshold (Qm), defines the difference 
in the values of objective 'm' between two solutions for 
which it is inconclusive to favor one solution over 
another for that specific objective. The third factor, the 
preference threshold (Pm), represents the threshold 
beyond which the difference in objective 'm' values 
between two solutions warrants a preference for the 
solution with the better objective value. Lastly, the veto 
threshold (Vm) is used to rule out the selection of one 
solution over another if the difference between their 
objective 'm' values exceeds a certain threshold. The 
latter implies that even if a solution excels in other 
criteria, it may be disregarded based on a specific 
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objective. The three thresholds are established 
individually for each criterion, in such a manner that: 

0 ≤ 𝑄𝑚 ≤ 𝑃𝑚 ≤ 𝑉𝑚 (9) 
  

Equations (10-13) are used to calculate the 
various indices: the difference ∆𝑚[𝑖, 𝑗] between the 
objective m of solutions i and j, the individual 
concordance index 𝑐𝑚[𝑖, 𝑗], the global concordance 
index 𝐶[𝑖, 𝑗], and the discordance index 𝐷𝑚[𝑖, 𝑗]. These 
indices are determined through a pairwise comparison. 
When the difference between values is less than the 
indifference threshold for a given criterion, the 
individual concordance index is assigned a value of 
unity. Within the range spanning from the indifference 
to the preference thresholds, the index diminishes 
linearly from 1 to 0. If the difference surpasses the 
preference threshold for a given criterion, the 
concordance index is set to zero. When the difference 
between values is below the preference threshold, the 
discordance index is assigned a value of 0. Within the 
range encompassing the preference and veto 
thresholds, the index exhibits a linear progression from 
0 to 1. In instances where the difference exceeds the 
veto threshold, the discordance index is fixed at a value 
of 1. 

∆𝑚[𝑖, 𝑗] = 𝐹𝑚(𝑗) − 𝐹𝑚(𝑖)     { 

𝑖   ∈     [1,𝑁]
𝑗   ∈     [1, 𝑁]

𝑚   ∈     [1,𝑀]
 (10) 

𝑐𝑚[𝑖, 𝑗] =

{
 

 

 

1             𝑖𝑓∆𝑚[𝑖, 𝑗] ≤  𝑄𝑚
𝑃𝑚 − ∆𝑚[𝑖, 𝑗]

𝑃𝑚 − 𝑄𝑚
  𝑖𝑓 𝑄𝑚 < ∆𝑚[𝑖, 𝑗] ≤ 𝑃𝑚 

0              𝑖𝑓  ∆𝑚[𝑖, 𝑗] > 𝑃𝑚

 (11) 

𝐶[𝑖, 𝑗] = ∑ 𝑊𝑚𝑐𝑚[𝑖, 𝑗]

𝑀

𝑚=1

      {
𝑖   ∈     [1, 𝑁]
𝑗   ∈     [1, 𝑁]

 (12) 

𝐷𝑚[𝑖, 𝑗] =

{
 

 

 

0               𝑖𝑓∆𝑚[𝑖, 𝑗] ≤  𝑃𝑚
∆𝑚[𝑖, 𝑗] − 𝑃𝑚
𝑉𝑚 − 𝑃𝑚

   𝑖𝑓 𝑃𝑚 < ∆𝑚[𝑖, 𝑗] ≤ 𝑉𝑚 

1                𝑖𝑓  ∆𝑚[𝑖, 𝑗] > 𝑉𝑚

 (13) 

 

Once the global concordance and discordance 
indices have been calculated, the process moves on to 
the comparative analysis of each pair of Pareto-optimal 
solutions. This evaluation involves calculating each 

element of the outranking matrix, denoted as 𝜎[𝑖, 𝑗] 
using Equation (14). Essentially, the outranking matrix 
serves as a tool to determine which solutions 
outperform others based on their relative performance. 

𝜎[𝑖, 𝑗] = 𝐶[𝑖, 𝑗](∏[1 −

𝑀

𝑚=1

(𝐷𝑚[𝑖, 𝑗])
3]   {

𝑖 ∈ [1, 𝑁]
𝑗 ∈ [1,𝑁]

 (14) 

 

In order to determine the best solution, the 
score of each solution i is calculated using Equation 
(15). The first term assesses how well solution i 
performs compared to all the other solutions in the 
Pareto domain. The second term evaluates the 
performance of all the other solutions relative to 
solution i. After computing the ranking score for each 
solution, they are sorted in descending order. This 
calculation is the final step in the solution evaluation 
process. The solution with the highest score is 
considered the best. 

𝜎𝑖 =∑𝜎[𝑖, 𝑗] −∑𝜎[𝑗, 𝑖]

𝑀

𝑗=1

𝑀

𝑗=1

 (15) 

 

3. Results and discussion 
3. 1. Final ANN Model 

As previously explained, various ANN models 
were trained and integrated into the MOO phase to 
circumscribe the Pareto domain and propose the 
optimal solution for catalytic SO2 conversion. Initially, 
data were gathered from diverse sources, and a subset 
of variables was selected. The first version of our 
database was formed by extracting data from 32 papers. 
Then, the preprocessing stage was performed to 
increase the integrity and quality of the data. After 
finalizing the input and output parameters, several ANN 
model structures were randomly selected to assess their 
ability to predict conversion. Simultaneously exploring 
the structure of ANNs, the hyperparameters tuning was 
performed to enhance the performance of the ANNs and 
reduce errors. This procedure is guided by experience 
in developing ANNs, but still involves a degree of trial 
and error. Once the best-performing ANN model was 
identified, it was used in the MOO procedure, along with 
the solution ranking algorithm as per Figure 1, to 
determine the optimal solution.  

Multiple ANN models were trained using the 
updated hyperparameters obtained from the 
hyperparameter tuning process. The architecture of the 
final ANN model, as detailed in Table 3, consists of three 
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hidden layers, each accommodating 22 neurons. The 
model employs the Adam optimizer with a learning rate 
set at 0.0005. Additionally, a batch size of 32 and an 
epoch value of 50000 were selected. The dataset was 

partitioned into the training, validation, and testing sets 
in an 80:10:10 ratio, denoted as Tr/V/Te.  

 

 

Table 3. Structure of the final ANN model. 

Optimizer Learning rate Hidden layers with neurons Batch size Epoch Tr/V/Te size 

Adam 0.0005 3 HL: 22, 22, 22 32 36782 80/10/10 

 
Figure 4 provides an overview of the 

performance of the final ANN model. As shown in Figure 
4a, the MSE in the prediction of the normalized 
conversion for both the training and validation datasets 
decreases sharply at the beginning and then gradually 
converges to its final value as the number of epochs 
exceeds 10000, with the final weights and biases being 
recorded at 36782 epochs which were achieved with 
early stopping technique which can help improve the 
generalization performance of a model.. The parity plot 
of the conversion for the training data is displayed in 

Figure 4b, which shows an MSE of 0.0025 and an R2 
value of 0.9745. Figure 4c and Figure 4d further 
illustrate the performance of the ANN model on the 
validation and testing datasets, respectively. The 
model’s performance on these datasets is comparable to 
that of the training data, indicating its consistency. This 
uniformity across different datasets implies that the 
model exhibits a low error in the prediction of the 
conversion and can effectively generalize to unseen 
testing data, thereby mitigating any concerns regarding 
overfitting. 

 

 
Figure 4. Performance of the final ANN model: (A) Training and validation MSE as a function of the number of epochs, and the 

parity plots of the conversion for the (B) training dataset, (C) validation dataset, and (D) testing dataset. 
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To comprehensively assess the capacity of the 
ANN model to surpass conventional statistical and 
regression techniques, its performance was 
benchmarked against linear regression, ridge 
regression, and polynomial regression models on a 10% 
testing dataset. The comparative results, presented in 
Table 4, highlight the superior performance of the ANN 
model in all evaluated metrics. Notably, the ANN model 
exhibits a marked improvement over its counterparts, 
as evidenced by significantly lower MSE and higher R² 
values. This analysis underscores the ANN model's 
robust predictive capability, achieving both greater 
accuracy and better generalizability compared to the 
tested regression approaches. 

The dataset, as mentioned earlier, comprises 
information about two specific applications of SO2 
catalytic conversion: FGD and H2SO4 production. Both 
processes convert SO2 into SO3 using different metal 
catalysts supported by various materials. A key 

distinguishing factor between these applications within 
the dataset is the mole fraction of SO2 in the feed. Data 
points with a low SO2 concentration (less than 1%) 
correspond to FGD, whereas those with a higher 
concentration (above 7%) are associated with H2SO4 
production. 

This study primarily focuses on optimizing the 
production of H2SO4, given its significant economic 
importance as one of the most widely produced 
chemicals worldwide. However, exploring optimal 
conditions for FGD applications is also achievable since 
the data points in the dataset are comprised of both 
applications. Consequently, to tailor the problem 
formulation specifically for H2SO4 production, the mole 
fraction of SO2 was fixed at 10%. Additionally, to mimic 
industrial practice, the oxygen concentration was set at 
11%.  

 
 

Table 4. Comparative performance of the final ANN and traditional regression models on the testing data. 

Performance 
criteria 

Linear regression  Ridge regression Polynomial regression ANN 

MSE 0.0461 0.0463 0.0128 0.0031 

R2 0.4970 0.4939 0.8597 0.9641 

   

3. 2. Case study 1: Vanadium-potassium catalyst 
The MOO problem allows for the exploration of 

various combinations of metals, either individually or in 
conjunction, supported by the three available support 
materials. However, given the impracticality of 
examining all possible combinations, a prominent 
bimetallic catalyst featuring a mixture of vanadium and 
potassium was first selected for further investigation in 
the MOO problem. This selection was motivated by the 
prevalence of reported instances involving these two 
metals, which collectively constitute approximately 
35% of the entire databank. 

Table 5 presents the fixed and variable 
parameters that have been set for the MOO problem. 
The fraction of the active phase was selected to be 
optimized along with operating parameters such as 
temperature, pressure, and the W/V. It is important to 
note that each variable was constrained within its range 
of gathered data in the databank as reported in Table 1. 
The temperature range was set between 310-622°C, 
which is the range where both vanadium and potassium 

coexist. The pressure was kept constant at 1 atm, while 
the W/V was allowed to vary between 0.02-1.00 
kgcat·s/L. The lower limit of 0.02 for W/V corresponds 
to the smallest W/V ratio observed when both 
vanadium and potassium are present in the dataset. The 
support material was also specified to be silica, as this 
material is the only one in the dataset that was used for 
both vanadium and potassium-based catalysts. 
 
Table 5. Values of the decision parameters for the catalytic 

combination of vanadium and potassium. 

Decision Parameters State Value 
Components Fixed V and K 

Active phase fraction Variable 
V = 2.0-8.0 wt% 

K = 2.0-18.42 wt% 
Support Fixed SiO2 

Temperature Variable 310-622°C 
Pressure Fixed 1 atm 

Catalyst W/V Variable 0.02-1.00 kgcat·s/L 
SO2 fraction Fixed 0.10 
O2 fraction Fixed 0.11 
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Process variables that were not involved in this 
specific case study were set to zero. The size of the 
population and the number of generations of NSGA-II 
were respectively set at 1000 and 10000. Other NSGA-II 
factors depicted in Figure 1 were carefully adjusted to 
circumscribe a well-defined Pareto front. The selection 
of these parameters guides the optimization process 
within the MOO framework, facilitating the exploration 
of diverse solutions while ensuring robustness and 
efficiency in identifying non-dominated solutions.  

The next phase involved the ranking of all 
Pareto-optimal solutions by the NFM, as shown in 
Figure 1. Table 6 outlines the set of parameters of the 
NFM used in this study to rank all solutions of the Pareto 
domain. The relative weights for the conversion and 
productivity were set at 0.45, whereas the weight for the 
cost was set at 0.1. A higher significance was placed on 
the first two objectives. This strategic emphasis 
underscores the objective of having both high 
conversion and high productivity, albeit potentially 
resulting in higher costs. Furthermore, in the NFM 
ranking algorithm, the specification of the indifference, 
preference, and veto thresholds often involves some 
form of expert judgment or statistical analysis. The 
selection of these thresholds is a critical aspect of the 
NFM ranking algorithm, as they directly influence the 
resulting ranking of all Pareto-optimal solutions.  
 
Table 6. NFM parameters for vanadium and potassium case 

study. 

Parameters Conversion Productivity Cost 

W 0.45 0.45 0.1 

Q 2 0.01 50 

P 5 0.03 100 

V 10 0.1 200 

 
Figure 5 provides a visual representation of the 

Pareto domain, highlighting the interaction among the 
three objective functions. In Figure 5, the three-
dimensional Pareto domain is represented by three 
two-dimensional projections. All Pareto-optimal 
solutions are partitioned based on their ranking using 
different colors as per the legend of Figure 5b. Figure 5a 
examines the relationship between conversion and 
productivity. Conversion is defined as the extent to 
which SO2 is transformed into SO3 during the catalytic 
process, while productivity quantifies the speed to 
achieve this conversion. A preliminary analysis of the 
Pareto domain reveals two distinct phenomena. Firstly, 

both conversion and productivity generally increase 
simultaneously. Second, a clear conflict among these 
objectives is also revealed when examining the ranking 
partitions, where a trade-off situation is observed with 
the enhancement of conversion, which inevitably leads 
to a decrease in productivity. This inverse correlation is 
more visually apparent at the right edge of the Pareto 
domain with the highest conversion percentages 
coinciding with the lowest productivity values. The 
highest-ranked solution, namely the champion, is 
located at the highest productivity accompanied of a 
relatively small compromise in the conversion 
percentage.  

Figure 5b explores the relationship between the 
percentage conversion and the cost of the catalyst of 
Pareto-optimal solutions. The NFM relative weight for 
the cost was 0.1 compared to 0.45 for the other two 
objectives as they were seen as more significant. It is 
therefore not surprising to find the highest-ranked 
solution at a higher cost, which implies a larger amount 
of catalyst to favor higher conversion and productivity. 
The plot of Figure 5b clearly show the conflict that exists 
between the desire to maximize conversion and 
minimize the cost. Figure 5c further investigates the 
relationship between cost and productivity. 
Concentrating on the right edge of the Pareto domain, it 
is clear that minimizing the cost results in lower 
productivity. Considering the three objectives and the 
relative weight for each, the champion solution was 
located at the highest productivity (0.193 mol 
SO3/kgcat·s), relatively high conversion (86.3%), and a 
high cost (163.3$/kg), resulting from the greater 
priority attributed to the conversion and productivity. 

Our attention is now turned to the decision 
space. In this case, the composition of the selected 
catalyst, W/V, and the reaction temperature were the 
process variables that were allowed to vary. Figure 6 
presents the plots of the four decision variables 
associated with all Pareto-optimal solutions. Figure 6a 
presents a plot depicting the active phase fraction for 
vanadium and potassium. Higher amounts of these 
metals are associated with increased percentage 
conversion, productivity, and cost. The region 
containing the highly-ranked Pareto-optimal solutions 
is located at a high fraction of potassium (17%) and a 
fraction of vanadium between 3 and 4%. For lower 
fractions of potassium, the fraction of vanadium is 
located at its lower value. The best Pareto-optimal 
solution corresponds to vanadium and potassium mass 
fractions of 3.8% and 18%, respectively. 
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Figure 6b provides an overview of the other two 
decision variables: the W/V ratio and the temperature. 
Near the strike temperature, in the vicinity of 400-
425oC, there is a sharp increase in the W/V ratio when 
decreasing temperature which implies a larger amount 
of catalyst is required to achieve higher conversion and 
productivity. In addition, the rate of reaction is lower at 
a lower temperature. Above this limiting temperature, 
the W/V ratio hovers around its bounded lower limit. It 
is important to recall that the SO2 to SO3 reaction is a 
reversible exothermic reaction such that increasing the 
temperature eventually leads to a decrease in the 
achievable conversion and productivity. It is therefore 

not surprising to observe the highly-ranked Pareto-
optimal solutions are located in a very narrow range of 
temperatures just slightly above the strike temperature. 
The champion is obtained with a W/V value of 0.02 
kgcat·s/L and a temperature of 436°C, consistent with 
the reported strike temperature for the SO2 reaction. 
This finding underscores the critical balance required 
between the amount of catalyst and the reaction 
temperature needed to maximize conversion and 
productivity, while also minimizing the negative impact 
of the temperature increase on the reaction equilibrium 
concentration. 

   
Figure 5. Pareto domain: (A) conversion vs productivity, (B) conversion vs cost, and (C) cost vs productivity for vanadium and 

potassium case study. 
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Figure 6. Decision space: (A) vanadium wt% vs potassium wt% and (B) temperature vs W/V for vanadium and potassium 

case study. 

 

3. 3. Case study 2: Platinum catalyst 
An additional case study was undertaken to 

investigate the catalyst platinum and determine the 
optimal active phase and operating conditions. The 
selection of platinum for this investigation is motivated 
by two main factors. Firstly, platinum is renowned for its 
potent active sites and its high catalytic efficiency [82], 
[83]. Secondly, platinum-related data constitutes 
approximately 20% of the information gathered in the 
databank. Akin to the preceding case study, the objective 
was to determine the optimal composition and 
operating parameters for platinum supported on silica, 
under a fixed pressure of 1 atm, and fixed mole fractions 
of SO2 and O2 at 10% and 11% respectively. Therefore, 
the variables under consideration are the active phase 
fraction of platinum, temperature, and W/V. 

The same ANN model employed in optimizing 
other metals was also applied to platinum, given that it 
was trained on all available metals. During the MOO 
phase, the lower and upper bounds of the decision 
variables were set based on the minimum and 
maximum values observed for each variable when the 
platinum active phase was non-zero. This approach 
ensures that the extrapolation does not exceed the 
dataset's range for each specific metal. The remaining 
parameters of NSGA-II were kept consistent with the 
previous case study. However, the NFM parameters for 
this case study needed to be adjusted due to differing 
objective ranges compared to vanadium and potassium. 
This adjustment was necessary because of the 

platinum's wider operating range and considerably 
higher cost compared to vanadium and potassium. 
Table 7 outlines the NFM parameters used in the 
platinum case study. Notably, the emphasis is placed on 
conversion and productivity over cost, as depicted in 
Table 7. 
 

Table 7. NFM parameters for platinum case study. 

Parameters Conversion Productivity Cost 

W 0.45 0.45 0.1 

Q 1 0.2 300 

P 5 0.4 700 

V 10 1.0 1500 

  
Figure 7 presents the Pareto domain for the 

platinum case study, focusing on the same three 
objectives previously considered: conversion, 
productivity, and catalyst cost. In Figure 7a, a consistent 
pattern emerges, akin to the vanadium-potassium case 
study, where two similar trends are observed. 
Examining the oblique left edge of the Pareto domain, it 
is clear that higher conversion is accompanied by higher 
productivity to a certain point. This trend makes sense 
as the definition of productivity embeds the conversion. 
However, examining the colored bands of similarly-
ranked Pareto-optimal solutions and the right edge of 
the Pareto domain shows a clear trend of the decrease 
in productivity as the conversion continues to increase. 
This trend is logical since to achieve very high 
conversion, the flowing gas must spend significantly 



   

 

16 
 

more time in the reactor and/or a greater amount of 
platinum catalyst must be used. As a result, the 
productivity decreases as it includes both the reaction 
time and the amount of catalyst. Indeed, it is possible to 
achieve near 100% conversion, but at the expense of 
reduced productivity. Additionally, Figure 7b 
corroborates the notion that increased conversion 
demands a larger amount of the catalyst's active phase, 
consequently increasing the overall cost. Figure 7c 
elucidates the interplay between cost and productivity. 
Notably, it reveals that achieving high productivity does 
not inherently entail incurring exorbitant costs. This 
suggests that high productivity levels can be attained 
without substantial increases in cost, particularly when 

the amount of platinum used is minimal. This highlights 
the feasibility of optimizing productivity while 
mitigating costs. The highest-ranked Pareto-optimal 
solution is achieved at a percentage conversion of 90%, 
a productivity of 1.34 mol SO3/kgcat·s, and a cost of 
$294/kg. It is important to recognize that this result 
does not simulate the steady-state process involved in 
H2SO4 production, where the goal is to achieve nearly 
100% conversion. This high conversion is attained using 
multiple packed beds with intermediate heat 
exchangers, where the temperature and conversion 
vary continuously along the packed bed. The results of 
the current investigation are for a constant temperature 
and steady-state homogeneous process.

   

Figure 7. Pareto domain: (A) conversion vs productivity, (B) conversion vs cost, and (C) cost vs productivity for the platinum 
case study. 
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Figure 8 depicts the decision space 
corresponding to the Pareto domain illustrated in 
Figure 7. This analysis offers valuable insights into the 
relationship between temperature, the platinum active 
phase, and W/V ratio. In Figure 8a, the temperature 
variation is juxtaposed with changes in the platinum 
active phase. Initially, temperature bounds were set 
within the range of 204-780°C. However, the MOO 
process has identified Pareto-optimal solutions in a 
temperature range spanning 430-570°C. Figure 8a can 
be partitioned into three distinct sections based on the 
platinum active phase concentration.  

The first portion of the plot of Figure 8a 
encompasses instances where the platinum 
concentration remains below 1%. Within this range, 
increasing the platinum active phase content coincides 
with enhanced conversion and productivity, particularly 
at lower temperatures. Remarkably, this region aligns 
with the lower segment of Figure 8b representing the 
W/V ratio. This juxtaposition indicates that within this 
zone, optimal productivity levels alongside a 90% 
conversion are attainable when the temperature is on 
the low side. In the second segment of Figure 8a, the 

temperature remains relatively constant as the 
platinum active phase concentration increases. This 
phenomenon is mirrored in Figure 8b, where at low and 
nearly constant temperature, the W/V ratio exhibits an 
upward trend. Consequently, this trend corresponds to 
an increasing percentage conversion, and at the same 
time, there is a trade-off in terms of reduced 
productivity.  

The third segment of Figure 8a illustrates a 
simultaneous increase in the temperature and the 
amount of platinum active phase. This trend is also 
evident in Figure 8b, particularly at higher values of the 
W/V ratio. With an increase in the amount of the 
platinum active phase, in the temperature, and the W/V 
ratio, the productivity decreases while the percentage 
conversion and the catalyst cost surge to peak levels. A 
delicate balance between conversion efficiency and 
overall productivity must be managed. While achieving 
peak percentage conversion, care must be exercised to 
mitigate costs. 

 
 

   

Figure 8. Decision space: (A) platinum wt% vs temperature and (B) temperature vs W/V for the platinum case study. 

The methodologies developed in this study offer 
significant real-world applications across various 
industries, facilitating optimized catalyst design and 
operating conditions for enhanced efficiency, cost-
effectiveness, and sustainability. In the H2SO4 
production industry, this approach can be used to 
improve conversion and productivity while 
simultaneously minimizing costs and resource 

consumption. By applying the optimization techniques, 
designers can precisely tailor catalyst compositions and 
reaction conditions, thereby achieving higher yields and 
reduced energy requirements. Similarly, in the field of 
FDG, the method can be utilized to meet stringent 
environmental regulations by optimizing catalysts for 
SO2 removal, ensuring both cost-efficiency and 
compliance with environmental standards. In the 
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petrochemical sector, the framework can enhance the 
refinement of various products, increasing the 
selectivity and yield of desired compounds while 
lowering production costs. In hydrogen production, the 
same optimization process can balance energy 
consumption and catalyst performance, extending the 
lifespan of catalysts while maintaining high efficiency. 
Moreover, the methods are applicable to emerging 
sustainable technologies, such as carbon capture and 
utilization, and biomass conversion, where optimizing 
catalysts can significantly improve reaction outcomes 
and reduce waste. By integrating ANN predictions with 
MOO, industries can accelerate the design and testing of 
catalysts, reducing the need for costly and time-
consuming experimental work. This integrated 
approach not only drives innovation but also provides a 
pathway to solving complex challenges in a range of 
sectors, from chemical production to energy generation. 
Overall, the insights gained from this study can be 
leveraged to foster sustainable, efficient, and cost-
effective operations, benefiting industries seeking to 
improve both their economic outcomes and 
environmental performance. 

 
4. Conclusion 

The catalytic conversion of SO2 is critical in 
various industrial applications, including FGD and 
H2SO4 production. This study delves into optimizing this 
conversion process using a multifaceted approach that 
incorporates ML, MOO, and decision-making 
techniques. Our efforts shed light on the complex 
interplay between various parameters and objectives, 
providing valuable insights into enhancing conversion 
efficiency while balancing productivity and cost 
considerations, even for a relatively simple reactive 
system. In this study, data were gathered from literature 
sources and underwent preprocessing to improve their 
quality. The hyperparameter tuning was then conducted 
to identify the best AAN model to predict SO2 conversion 
with the lowest error. Using this AAN model, three 
objectives (conversion, productivity, and cost of the 
catalyst) were formulated, and the NSGA-II optimization 
algorithm was used to circumscribe the Pareto domain. 
The Pareto-optimal solutions were subsequently 
ranked using the NFM.  

Two case studies were considered for H2SO4 
production: one using a vanadium-potassium catalyst 
and the other using platinum as the catalyst. For each 
case study, the same AAN model obtained to predict 
conversion was utilized, and along with other 

objectives, the Pareto domain and optimal decision 
variables were illustrated. It was observed that for both 
case studies, conversion and productivity have trade-
offs; increasing one objective leads to a decrease in the 
other. These trade-offs also impact the cost of the 
catalysts. The analysis underscored the critical role of 
key parameters, such as catalyst composition, 
temperature, and W/V ratio, in shaping process 
performance. Optimal solutions often required careful 
adjustments to these parameters, reflecting the delicate 
balance needed to achieve desired conversion levels 
without compromising productivity or incurring 
excessive costs. The optimal findings for the first case 
study revealed a conversion of 86.3%, a productivity of 
0.193 mol SO3/kgcat·s, and a cost of 163.3$/kg with 
vanadium and potassium mass fractions of 3.8% and 
18%, respectively. These outcomes were acheived with 
an optimal W/V value of 0.02 kgcat·s/L and a 
temperature of 436°C. For the second case study, a 
conversion of 90%, a productivity of 1.34 mol 
SO3/kgcat·s, and a cost of $294/kg were obtained. These 
results were achieved with 1% platinum wt% and with 
a W/V value of 0.003 kgcat·s/L and a temperature of 
451°C. 

In conclusion, this study offers a comprehensive 
exploration of the catalytic conversion of SO2, 
integrating ML, MOO, and decision-making techniques 
to optimize process performance. By leveraging 
advanced methodologies and rigorous analysis, we 
elucidated key insights into the intricate dynamics 
governing conversion efficiency, productivity, and cost. 
Our findings pave the way for informed decision-making 
and strategic optimization initiatives aimed at 
enhancing the sustainability and efficiency of catalytic 
conversion processes in diverse industrial sectors. 
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