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Abstract: The finite mixture model is considered as an 
appropriate instrument for data clustering. Different 
parsimonious multivariate mixture distributions are introduced 
for skewed and/or heavy-tailed longitudinal data. The 
eigenvalue or modified Cholesky decomposition of covariance 
matrices develops the families of parsimonious mixture models. 
Thus, the finite mixture of matrix-variate t-distributions for 
clustering a three-way dataset with heavy-tailed or outlier 
observations (e.g., multivariate longitudinal data) is more 
appropriate compared to matrix-variate normal distributions. 
Accordingly, the present study considered a parsimonious family 
of the finite mixture of matrix-variate t-distributions using the 
eigenvalue and modified Cholesky decomposition for within and 
between covariance matrices, respectively. Finally, parameter 
estimates were calculated using the expectation-maximization 
algorithm, and simulations studies and real data analyses were 
conducted to confirm the obtained results. 

 
Keywords: Eigenvalue Decomposition; Finite Mixture; 
Matrix-Variate t-Distribution; Modified Cholesky 
Decomposition; Multivariate Longitudinal Data; 
Parsimonious Covariance Structures. 
 
© Copyright 2024 Authors - This is an Open Access article 
published under the Creative Commons Attribution               
License terms (http://creativecommons.org/licenses/by/3.0). 
Unrestricted use, distribution, and reproduction in any medium 
are permitted, provided the original work is properly cited. 

 

 
1. Introduction 

Finite mixture models in the statistical data 
analysis mainly contribute to modelling a heterogeneous 
population and providing an easy and model-based 
method for clustering and classification structure [1], 
[2]. 

Different studies have evaluated various finite 
mixtures of distributions focusing on multivariate (two-
way data) distributions. For instance, such studies have 
proposed different finite mixtures of multivariate 
distributions, including multivariate normal 
distribution, multivariate t-distribution [3], multivariate 
skew-normal distribution [4], multivariate skew-t-
distribution [5], multivariate normal inverse Gaussian 
[6], multivariate generalized hyperbolic distribution [7], 
and multivariate power exponential distribution [8] over 
the last two decades. 

Three-way data including multivariate longitudinal, 
spatial multivariate, and spatio-temporal data may be 
available in a range of scientific domains [9]. Despite the 
important role of matrix-variate distributions in three-
way data analysis, a small body of research exists in this 
respect. For example, Viroli (2011) introduced the finite 
mixtures of matrix-variate normal distributions 
(MVNDs) for classifying the three-way data. In addition, 
Anderlucci and Viroli (2015a) considered the finite 
mixture of MVNDs for multivariate longitudinal data. In 
another study, Doğru, Bulut and Arslan (2016) proposed 
a finite mixture of matrix-variate t-distributions 
(MVTDs). Further, Gallaugher and McNicholas 
(Gallaugher and McNicholas, 2017a; Gallaugher and 
McNicholas, 2017b; Gallaugher and McNicholas, 2019) 
applied four skewed matrix-variate distributions of 
matrix-variate skew-t, generalized hyperbolic, variance-
gamma, and normal inverse Gaussian distributions in the 
finite mixture of these distributions. Too, Tomarchio 
(2024) presented the matrix-variate normal mean-
variance Birnbaum–Saunders distribution and mixture 
of it in the model-based clustering. 
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In the two- or three-way data, where there are some 
departures from normality in datasets, using normal 
distributions affects the estimation of some parameters 
(McNicholas and Murphy 2010). The presence of outlier 
or heavy-tailed data is considered as one of the common 
departures from normality and in such case, the mixture 
of t-distributions is an appropriate alternative to the 
mixture of normal distributions [12]. 

On the other hand, without any constraints on 
mixture parameters, the number of estimated 
parameters increases dramatically by an increase in 
components. Therefore, some constraints should be put 
on model parameters in order to achieve more 
parsimonious models. Considering a large number of 
mixture parameters in the covariance matrix 
component, more attention should be drawn on 
covariance structure decomposition. Further literature 
contains parsimonious covariance matrices in the 
mixture of multivariate distributions (Banfield and 
Raftery, 1993; Celeux and Govaert, 1995; Fraley and 
Raftery, 2002; McNicholas and Murphy, 2010; Andrews 
and McNicholas, 2012; McNicholas and Subedi, 2012; 
Vrbik and McNicholas, 2014). 

Some studies have investigated the parsimonious 
feature only in the finite mixture of MVNDs for three-way 
(Viroli, 2011; L Anderlucci and Viroli, 2015a; Sarkar et 
al., 2020). However, Tomarchio (2023) applied a 
parsimonious MVTD mixture model through the 
eigenvalue decomposition  of two covariance matrices. 
To the best of our knowledge, no research has applied 
the parsimonious MVTD mixture model to multivariate 
longitudinal data. Therefore, the present study focused 
on the parsimonious mixture of MVTDs for clustering 
multivariate longitudinal data with outliers or heavy-
tails. The remaining sections of the present study are 
organized as follows. Section 2 reviews the finite mixture 
of MVTDs and the decomposition of covariance matrices. 
Further, the details of the estimates of MVTD parameters 
are provided in Section 3. Furthermore, Section 4 
discusses the simulation studies and real examples in 
order to demonstrate the performance of models, 
followed by presenting the main findings in Section 5. 

2. Background 
2.1 Finite mixture of MVTDs 

A 𝑇 × 𝑝 dimensional random matrix X is assumed 
to arise from a parametric finite mixture if it is possible 
to write 𝑝(𝑿|𝜗) = ∑ 𝜋𝑖𝑝𝑖(𝑿|𝜃𝑖)

𝑘
𝑖=1  for all 𝑿 ⊂ 𝛘, where 

𝝑 = (𝜋1, … , 𝜋𝑘, 𝜃1, … , 𝜃𝑘) is the vector of parameters, 

and 𝜋𝑖 and k are the mixing proportion and the number 
of mixture components, respectively, so that ∑ 𝜋𝑖

𝑘
𝑖=1 = 1 

and 𝜋𝑖 ∈ [0,1]. Additionally, 𝑝𝑖(𝑿|𝜃𝑖) is referred to as the 
density of the ith component. In the mixture of MVTDs, 
component density with a 𝑇 × 𝑝 mean matrix 𝑴𝑖, two 
covariance matrices 𝚽𝑖 and 𝛀𝑖 with dimensions 𝑇 × 𝑇 
and 𝑝 × 𝑝, and degrees of freedom 𝑣𝑖 is as follows [27]: 

𝑀𝑡(𝑇×𝑝)(𝑿|𝑴𝑖 , 𝜱𝑖 , 𝜴𝑖 , 𝑣𝑖)

=
𝛤 (

𝑇𝑝+𝑣𝑖

2
)

(𝜋𝑣𝑖)
𝑇𝑝

2  𝛤 (
𝑣𝑖

2
) |𝜱𝑖|

𝑝

2 |𝜴𝑖|
𝑇

2

 (1

+
𝑡𝑟{(𝑿 − 𝑴𝑖)

′𝜱𝑖
−1(𝑿 − 𝑴𝑖)𝜴𝑖

−1}

𝑣𝑖

)

−
𝑇𝑝+𝑣𝑖

2

 

(1) 

where T and p indicate the number of measurement 
times and the number of response variables, 
respectively. In addition, 𝚽𝑖 and 𝛀𝑖 are commonly 
referred to as between and within covariance matrices, 
respectively. In the present study, the upper case 
boldface was used for the matrices. 

The MVTDs arise as a particular case of a normal 
variance mixture distribution. In this formulation, the 
random matrix X is defined as [12]: 

𝑿 = 𝑴 + 𝑊− 
1

2 𝑽, (2) 

where the matrix random V has the MVND with the mean 
matrix 0 and covariance matrices 𝜱 and 𝜴, 

𝑽~𝜙(𝑇×𝑝)(𝑿|𝑴,𝜱,𝜴), and the latent random variable W 

follows a gamma distribution with parameters (
𝑣

2
,
𝑣

2
). In 

addition, the estimates of 𝛀𝑖 and 𝚽𝑖 are not unique. For 
each positive and nonzero constant a, we have: 

𝛀𝑖 ⊗ 𝚽𝑖 = 𝑎𝛀𝑖 ⊗ (
1

𝑎
)𝚽𝑖 (3) 

The constraint 𝑡𝑟(𝛀𝑖) = 𝑝 or 𝑡𝑟(𝚽𝑖) = 𝑇 can be used 
to obtain an identifiable solution for 𝛀𝑖 and 𝚽𝑖 
(McNicholas and Murphy, 2010; McNicholas and Subedi, 
2012; Anderlucci and Viroli, 2015a; Gallaugher and 
McNicholas, 2017a; Gallaugher and McNicholas, 2017b; 
Gallaugher and McNicholas, 2019) 

2.2 The decomposition of covariance matrices 
Restrictions on mixture parameters are typically 

constructed by constraining covariance matrices. 
Further, restrictions on mean parameters can be 
imposed, for example, by considering a linear model of 
mean parameters instead of the parameters themselves 
[17], [28]. To achieve parsimonious models, eigenvalue 
and the modified Cholesky decompositions were used 
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for the between and within covariance matrices, 
respectively. 

2.2.1 The eigenvalue decomposition 

Celeux and Govaert (1995), as well as Banfield and 
Raftery (1993) utilized the eigenvalue decomposition in 
multivariate normal mixtures. This decomposition was 
used for the other multivariate mixture distributions 
such as t-mixture distributions [21], along with skew-
normal and skew-t mixture distributions [22] for 
clustering, classification, and discriminant analysis. On 
the other hand, Viroli (2011) and. Sarkar et al. (2020) 
applied the eigenvalue decomposition in the mixture of 
MVNDs. This parameterization includes the expression 
within component-covariance matrix (𝛀𝑖) in terms of its 
eigenvalue decomposition as 𝛀𝑖 = 𝜆𝑖𝑫𝑖𝑨𝑖𝑫𝑖

′ , where 𝑫𝑖 
denotes the matrix of eigenvectors Furthermore, 𝑨𝑖 is a 
diagonal matrix whose elements are proportional to the 
eigenvalues of 𝛀i and 𝜆𝑖 represents the associated 
proportionality constant. Different sub-models can be 
defined by considering homoschedastic or varying 
quantities across mixture components. According to 
Fraley and Raftery (2002) and Viroli (2011), the names 
of eight sub-models are provided in Table 1. 

2.2.2 Modified Cholesky decomposition 
The between component-covariance matrix (𝚽𝑖) of 

the multivariate longitudinal data can be decomposed by 
the modified Cholesky decomposition. McNicholas and 
Murphy (2010) in addition to McNicholas and Subedi 
(2012) employed the above-mentioned decomposition 
in clustering longitudinal data by multivariate normal 
and t-mixture distributions, respectively. For 
multivariate longitudinal data, Anderlucci and Viroli, 
(2015a) used this decomposition, along with the 
eigenvalue decomposition for the between and within 
covariance structures in the mixture of MVNDs, 
respectively. The modified Cholesky decomposition was 
expressed as 𝚽𝑖

−1 = 𝑼𝑖
′𝑻𝑖

−1𝑼𝑖 where 𝑼𝑖 is a unique lower 
triangular matrix with diagonal elements 1 and 𝑻𝑖  
denotes a unique diagonal matrix with strictly positive 
diagonal entries representing innovation variances. The 
matrix 𝑼𝑖 has the following form: 

𝑼𝑖 =

[
 
 
 
 
 
 
 
 

1 0 ⋯ ⋯ ⋯ ⋯ 0

−𝜙2,1
(𝑖)

1 0 ⋯ ⋯ ⋯ 0

−𝜙3,1
(𝑖)

−𝜙3,2
(𝑖)

1 0 ⋯ ⋯ 0

⋯ ⋯ ⋯ ⋱ 0 ⋯ ⋯

−𝜙r,1
(𝑖)

−𝜙r,2
(𝑖)

⋯ ⋯ 1 ⋯ ⋯

⋯ ⋯ ⋯ ⋯ ⋯ ⋱ 0

−𝜙T,1
(𝑖)

−𝜙T,2
(𝑖)

⋯ ⋯ ⋯ −𝜙𝑇,𝑇−1
(𝑖)

1 ]
 
 
 
 
 
 
 
 

. (4) 

The lower diagonal elements in 𝑼𝑖 equal the negative 
coefficients resulted from the regression of 𝑋𝑡 on 
𝑋𝑡−1, 𝑋𝑡−2, … . , 𝑋1 [32]: 

�̂�𝑡 = 𝑀𝑡 + ∑𝜙r,𝑠
(𝑖)

(𝑋𝑡 − 𝑀𝑡)

𝑡−1

𝑠=1

. (5) 

On the other hand, different orders (m) can be 
considered in matrix 𝑼𝑖, where m can range from 0 to T-
1. The lower orders provide more parsimonious models 
so that m=0 and m=1 equal the independency of different 
times and the dependency of 𝑿𝑡 on a previous time 
(𝑿𝑡−1), and the like. Accordingly, the modified Cholesky 
decomposition for the temporal covariance matrix 
equals the generalized autoregressive with process 
order m, GAR(m). Thus, the rth row elements of matrix 𝑼𝑖 
which should be estimated can be written as follows: 

(

 
 

−𝜙𝑟,𝑟−𝑚
(𝑖)

−𝜙𝑟,𝑟−𝑚+1
(𝑖)

⋮

−𝜙𝑟,𝑟−1
(𝑖)

)

 
 

; 𝑟 = 2,… , 𝑇, 𝑚 = 0,1, … , 𝑇 − 1. (6) 

Additionally, matrix 𝑻𝑖  can be defended as 𝑻𝑖 =
𝑑𝑖𝐼𝑇 (Isotropic) for a more parsimonious model. In 
addition, different sub-models can be defined by 
considering homoschedastic or varying quantities (i.e., 
𝑼𝑖 and 𝑻𝑖) across mixture components. Table 1 presents 
the names of the four sub-models for the structure of 
temporal covariance according to the nomenclature of 
Anderlucci and Viroli (2015a). These names are defined 
based on the heteroscedastic (GAR) or homoscedastic 
(EGAR) of 𝑼𝑖 and the isotropic of 𝑻𝑖 . 

 
Table 1:Parsimonious within and temporal covariance 

structures, descriptions and number of parameters 

 

Ω𝑖 
Descriptions Components 

Number of 

parameters 
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VVV 
Heteroscedastic 

components 
𝜆𝑖 𝑫𝑖 𝑨𝑖 𝑘

𝑝(𝑝 + 1)

2
 

EEV 
Ellipsoidal, equal 

volume and equal 

space 

𝜆 𝑫 𝑨𝑖 
𝑝

+ 𝑘
𝑝(𝑝 − 1)

2
 

EEE Homoscedastic 

components 
𝜆 𝑫 𝑨 𝑝(𝑝 + 1)

2
 

III 
Spherical 

components with 

unit volume 

1 𝑰𝑝 𝑰𝑝 0 

VVI 
Diagonal but 

varying variability 

components 

𝜆𝑖 𝑫𝑖 𝑰𝑝 𝑘𝑝 

EEI 
Diagonal and 

homoscedastic 

components 

𝜆 𝑫 𝑰𝑝 𝑝 

VII 
Spherical 

components with 

varying volume 

𝜆𝑖 𝑰𝑝 𝑰𝑝 𝑘 

EII 

Spherical 

components 

without varying 

volume 

𝜆 𝑰𝑝 𝑰𝑝 1 

Φ𝑖    

GAR(m) Heteroscedastic 

components 
𝑼𝑖 𝑻𝑖  𝑘𝑇 + 𝑘𝜑 

GARI(m) GAR + Isotropic 

for 𝑻 
𝑼𝑖 𝑑𝑖𝑰𝑇  𝑘 + 𝑘𝜑 

EGAR(m) Homoscedastic 

components 
𝑼 𝑻  𝑇 + 𝜑 

EGARI(m) EGAR+ Isotropic 

for 𝑻 
𝑼 𝑑𝑰𝑇  1 + 𝜑 

m = 0,1, … , T − 1 

𝜑 =
𝑇(𝑇−1)

2
−

(𝑇−𝑚−1)(𝑇−𝑚)

2
: The number of 𝐔𝑖 parameters 

 

3. Method 
3.1 Estimation of parameters 

To find the maximum likelihood estimators for 
mixture parameters, the present study used an 
expectation-maximization (EM) algorithm for the 
mixture of matrix-variate t-distributions (MVTDs). 

Assume that 𝑿1, … , 𝑿𝑛, where n is the number of 
observations, be a random sample of matrices from the 
mixture of MVTDs, and 𝑍𝑖𝑗  denotes the component 

membership of observation j. Further, 𝑍𝑖𝑗 = 1 if the jth 

observation is from component i, otherwise, 𝑍𝑖𝑗 = 0, 

where 𝑗 = 1 , … , 𝑛 and 𝑖 = 1,… , 𝑘. Based on the 
representation of normal-variance mixture, MVTDs are 
expressed as follows: 

𝑿𝑗|𝑊𝑗 , 𝑍𝑖𝑗 = 1~𝜙(𝑇×𝑝)(𝑴𝑖 ,𝑊𝑗
−1𝜱𝑖 , 𝜴𝑖  ), (7) 

𝑊𝑗|𝑍𝑖𝑗 = 1~ 𝐺𝑎𝑚𝑚𝑎 (
𝑣𝑖

2
,
𝑣𝑖

2
). 

Based on the hierarchical representation of the MVTDs, 
the complete data log-likelihood ℓ𝑐(𝜗) can be written as 
follows: 

ℓ𝑐(𝜗) =  ∑∑𝑍𝑖𝑗 [−
𝑇𝑝

2
𝑙𝑜𝑔 2𝜋

𝑘

𝑖=1

𝑛

𝑗=1

−
𝑝

2
𝑙𝑜𝑔|𝑊𝑗

−1𝜱𝑖| −
𝑇

2
𝑙𝑜𝑔|𝜴𝑖|

−
𝑊𝑗

2
𝑡𝑟{𝛀𝑖

−1(𝑿𝑗

− 𝑴𝑖)𝜱𝑖
−1(𝑿𝑗 − 𝑴𝑖)

′
} +

𝑣𝑖

2
𝑙𝑜𝑔 (

𝑣𝑖

2
)

− 𝑙𝑜𝑔 𝛤 (
𝑣𝑖

2
) −

𝑣𝑖

2
𝑊𝑗  

+ (
𝑣𝑖

2
− 1) 𝑙𝑜𝑔(𝑊𝑗)]

+ ∑∑ 𝑍𝑖𝑗 𝑙𝑜𝑔 𝜋𝑖

𝑘

𝑖=1

𝑛

𝑗=1

 . 

(8) 

An EM algorithm is as follows: 

I. Initialization: Initialize parameters πi, 𝐌𝑖, 𝚽i, 𝛀i, 
and 𝑣𝑖, setting 𝑡 = 0. 

II. E-step: Update E(Zij|𝐗j, 𝜗), E(𝑊𝑗|𝑿𝒋, Zij = 1; 𝜗), and 

E(log𝑊𝑗 |𝑿𝑗 , Zij = 1; 𝜗), where 

 

𝐸(𝑍𝑖𝑗|𝑿𝒋, 𝜗
(𝑡)) = 𝑃(𝑍𝑖𝑗 = 1|𝑿𝒋, 𝜗

(𝑡))

=
𝜋𝑖

(𝑡)
𝑀𝑡𝑇×𝑝(𝑿𝑗 ;  𝑴𝑖

(𝑡)
, 𝜱𝑖

(𝑡)
, 𝜴𝑖

(𝑡)
, 𝑣𝑖

(𝑡)
) 

∑ 𝜋𝑖

(𝑡)
𝑀𝑡𝑇×𝑝(𝑿𝑗 ;  𝑴𝑖

(𝑡)
, 𝜱𝑖

(𝑡)
, 𝜴𝑖

(𝑡)
, 𝑣𝑖

(𝑡)
)𝑘

𝑖=1

= 𝜏𝑖𝑗
(𝑡)

 
(9) 

𝐸(𝑊𝑗|𝑿𝒋, 𝑍𝑖𝑗 = 1; 𝜗(𝑡))

=
𝑇𝑝 + �̂�𝑖

(𝑡)

𝑡𝑟 {𝜴𝑖

(𝑡)−1
(𝑿𝑗 − 𝑴𝑖

(𝑡)
)
′
𝜱𝑖

(𝑡)−1
(𝑿𝑗 − 𝑴𝑖

(𝑡)
)} + 𝑣𝑖

(𝑡)

= 𝑊1𝑖𝑗
(𝑡)

, 

(10) 

 

𝐸(𝑙𝑜𝑔 𝑊𝑗 |𝑿𝒋, 𝑍𝑖𝑗 = 1; 𝜗(𝑡))

= 𝐷𝐺 (
𝑇𝑝 + 𝑣𝑖

(𝑡)

2
)

+ 𝑙𝑜𝑔 (
𝑡𝑟 {𝜴𝑖

(𝑡)−1
(𝑿𝑗 − 𝑴𝑖

(𝑡)
)
′
𝜱𝑖

(𝑡)−1
(𝑿𝑗 − 𝑴𝑖

(𝑡)
)} + 𝑣𝑖

(𝑡)

2
)

=𝑊2𝑖𝑗
(𝑡)

, 

(11
) 

where 𝐷𝐺(𝑡) =
𝑑

𝑑𝑡
𝑙𝑜𝑔 𝛤(𝑇) represents the digamma 

function. Furthermore, 𝑊1𝑖𝑗
(𝑡)

is calculated based on 

𝑊𝑗|𝑿𝒋, 𝑍𝑖𝑗 = 1 distribution, which has a gamma 

distribution with parameters 
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(
𝑇𝑝+�̂�𝑖

(𝑡)

2
,
𝑡𝑟{𝜴𝑖

(𝑡)−1
(𝑿𝑗−𝑴𝑖

(𝑡)
)
′
𝜱𝑖

(𝑡)−1
(𝑿𝑗−𝑴𝑖

(𝑡)
)}+𝑣𝑖

(𝑡)

2
), and 𝑊2𝑖𝑗

(𝑡)
 is 

achieved using the moment-generating function of 
𝑊𝑗|𝑿𝒋, 𝑍𝑖𝑗 = 1. 

III.  M-step: Update 𝜋𝑖, 𝑴𝑖, 𝜴𝑖 , 𝚽𝑖, and 𝑣𝑖. The 
order of parameter estimation is as follows (1):  𝜋𝑖 
and 𝑴𝑖; (2) 𝜴𝑖; (3) 𝚽𝑖; (4) 𝑣𝑖 
 
1. Update 𝜋𝑖 and 𝑴𝑖 

𝜋𝑖
(𝑡+1)

=
∑ 𝜏𝑖𝑗

(𝑡)𝑛
𝑗=1

𝑛
, 

𝑴𝑖
(𝑡+1)

=
∑ 𝜏𝑖𝑗

(𝑡)
𝑊1𝑖𝑗

(𝑡)
𝑿𝑗

𝑛
𝑗=1

∑ 𝜏𝑖𝑗

(𝑡)
𝑊1𝑖𝑗

(𝑡)
 𝑛

𝑗=1

, 

(12) 

2. Update 𝜴𝑖   

Assuming that 𝑩𝑖 = ∑ 𝜏𝑖𝑗
(𝑡)𝑊1𝑖𝑗

(𝑡)(𝑿𝑗 −𝑛
𝑗=1

𝑴𝑖
(𝑡+1)

)
′
𝚽𝑖

(𝑡)−1
(𝑿𝑗 − 𝑴𝑖

(𝑡+1)
), the ℓ𝑐(𝜗) is proportional to 

−
𝑇

2
∑ 𝑛𝑖 𝑙𝑜𝑔|𝜴𝑖| −

1

2
∑ 𝑡𝑟{𝛀𝑖

−1𝑩𝑖}
𝑘
𝑖=1

𝑘
𝑖=1  with 𝑛𝑖 = ∑ 𝜏𝑖𝑗

(𝑡)𝑛
𝑗=1 . 

The estimates o parameters for the eight sub-models are 
provided below. 

 Sub-model VVV: The maximization of 

−
𝑇

2
∑ 𝑛𝑖 𝑙𝑜𝑔|𝜴𝑖| −

1

2
∑ 𝑡𝑟{𝛀𝑖

−1𝑩𝑖}
𝑘
𝑖=1

𝑘
𝑖=1  with 

respect to 𝜴𝑖  leads to 𝜴𝑖
(𝑡+1)

=
𝑩𝑖

𝑛𝑖𝑇
; 

 Sub-model EEE: The maximization of 

−
𝑇𝑛

2
𝑙𝑜𝑔|𝜴|∑ −

1

2
𝑡𝑟{𝛀𝑖

−1 ∑ 𝑩𝑖
𝑘
𝑖=1 }𝑘

𝑖=1 , where 𝑛 =

∑ ∑ 𝜏𝑖𝑗
(𝑡)𝑛

𝑗=1
𝑘
𝑖=1 , with respect to 𝜴𝑖 = 𝜴 leads to 

𝜴(𝑡+1) =
∑ 𝑩𝑖

𝑘
𝑖=1

𝑛𝑇
 ; 

 Sub-model VVI: The maximization of 

−
𝑇𝑝

2
∑ 𝑛𝑖 𝑙𝑜𝑔 𝜆𝑖 −

1

2
∑

1

𝜆𝑖
𝑡𝑟{𝐀𝑖

−1𝑩𝑖}
𝑘
𝑖=1

𝑘
𝑖=1  with 

respect to 𝜴𝑖 = 𝜆𝑖𝑨𝒊 leads to 𝜆𝑖
(𝑡+1)

=
|𝑑𝑖𝑎𝑔(𝑩𝑖)|

1
𝑝

 𝑇𝑛𝑖
 

and 𝑨𝑖
(𝑡+1)

=
𝑑𝑖𝑎𝑔(𝑩𝑖)

|𝑑𝑖𝑎𝑔(𝑩𝑖)|
1
𝑝

; 

 Sub-model EEI: The maximization of 

−
𝑝𝑇

2
∑ 𝑛𝑖 𝑙𝑜𝑔|𝜴𝑖| −

1

2
∑ 𝑡𝑟{𝛀𝑖

−1𝑩𝑖}
𝑘
𝑖=1

𝑘
𝑖=1  with 

respect to 𝜴𝑖 = 𝜆𝑨 leads to 𝜆(𝑡+1) =

|𝑑𝑖𝑎𝑔(∑ 𝑩𝑖
𝑘
𝑖=1 )|

1
𝑝

 𝑇𝑛
and 𝑨(𝑡+1) =

𝑑𝑖𝑎𝑔(∑ 𝑩𝑖
𝑘
𝑖=1 )

|𝑑𝑖𝑎𝑔(∑ 𝑩𝑖
𝑘
𝑖=1 )|

1
𝑝

; 

 Sub-model VII: The maximization of 

−
𝑝𝑇

2
∑ 𝑛𝑖 𝑙𝑜𝑔 𝜆𝑖 −

1

2
∑ 𝑡𝑟 {

𝑩𝑖

𝜆𝑖
}𝑘

𝑖=1
𝑘
𝑖=1  with respect to 

𝜴𝑖 = 𝜆𝑖𝑰𝑝 leads to 𝜆𝑖
(𝑡+1)

=
𝑡𝑟{𝑩𝑖}

 𝑇𝑝𝑛𝑖
; 

 Sub-model EII: The maximization of −
𝑇𝑝𝑛

2
𝑙𝑜𝑔 𝜆 −

1

2𝜆
𝑡𝑟{∑ 𝑩𝑖

𝑘
𝑖=1 } with respect to 𝜴 = 𝜆𝑰𝑝 leads to 

𝜆(𝑡+1) =
𝑡𝑟{∑ 𝑩𝑖

𝑘
𝑖=1 }

 𝑇𝑝𝑛
; 

 Sub-model EEV: The maximization of −
𝑇𝑝𝑛

2
𝑙𝑜𝑔 𝜆 −

1

2𝜆
∑ 𝑡𝑟{𝑫𝑖𝐴

−1𝑫𝑖
′𝑩𝑖}

𝑘
𝑖=1  with respect to 𝜴𝑖 =

𝜆𝑫𝑖𝑨𝑫𝑖
′ leads to 𝜆(𝑡+1) =

|∑ 𝑪𝑖
𝑘
𝑖=1 |

1
𝑝

𝑛 𝑇
, 𝐴(𝑡+1) =

∑ 𝑪𝑖
𝑘
𝑖=1

|∑ 𝑪𝑖
𝑘
𝑖=1 |

1
𝑝

, 𝑫𝑖
(𝑡+1)

= 𝑳𝑖, where for 𝑖 = 1,… , 𝑘 𝑪𝑖, 

and 𝑳𝑖 are derived from the eigenvalue 
decomposition of the symmetric positive definite 
matrix 𝑩𝑖 = 𝑳𝑖𝑪𝑖𝑳𝑖

′  with the eigenvalues in the 
diagonal matrix 𝐂i in descending order. 

 Sub-model III: This situation equals the 
independence of the responses thus no 
parameters are available. 

Further estimation details related to the 
covariance matrix 𝜴𝑖  are provided in (Celeux and 
Govaert, 1995; Viroli, 2011; L Anderlucci and Viroli, 
2015a; Sarkar et al., 2020). 

3. Update 𝜱𝑖 

Considering that 𝑺(𝑖) = ∑ 𝜏𝑖𝑗
(𝑡) 𝑊1𝑖𝑗

(𝑡)  (𝑿𝑗 −𝑛
𝑗=1

�̂�𝑖
(𝑡+1)

) 𝜴𝑖
(𝑡+1)−1

 (𝑿𝑗 − �̂�𝑖
(𝑡+1)

)
′
, [fa1]ℓ𝑐(𝜗) is 

proportional to −
𝑝

2
∑ 𝑛𝑖 𝑙𝑜𝑔|𝑫𝑖| −𝑘

𝑖=1
1

2
𝑡𝑟{∑ (𝑼𝑖

′𝑻𝑖
−1𝑼𝑖)𝑺

(𝑖)𝑘
𝑖=1 }. The estimates of parameters 

for the four sub-models are presented as follows: 

 Sub-model GAR(m): The maximization of 

−
𝑝

2
∑ 𝑛𝑖 𝑙𝑜𝑔|𝑫𝑖| −

1

2
𝑡𝑟{∑ (𝑼𝑖

′𝑻𝑖
−1𝑼𝑖)𝑺

(𝑖)𝑘
𝑖=1 }𝑘

𝑖=1  

with respect to 𝜱𝑖 leads to the rth row estimation 
of matrix 𝑼𝑖 as  

 

(

 
 

𝜙𝑟,𝑟−𝑚
(𝑖)

𝜙𝑟,𝑟−𝑚+1
(𝑖)

⋯

𝜙𝑟,𝑟−1
(𝑖)

)

 
 

(𝒕+𝟏)

=

(

 
 

𝑆𝑟−𝑚,𝑟−𝑚
(𝑖) 𝑆𝑟−𝑚+1,𝑟−𝑚

(𝑖) ⋯ 𝑆𝑟−1,𝑟−𝑚
(𝑖)

𝑆𝑟−𝑚,𝑟−𝑚+1
(𝑖) 𝑆𝑟−𝑚+1,𝑟−𝑚+1

(𝑖) ⋯ 𝑆𝑟−1,𝑟−𝑚+1
(𝑖)

⋯ ⋯ ⋱ ⋮

𝑆𝑟−𝑚,𝑟−1
(𝑖) 𝑆𝑟−𝑚+1,𝑟−1

(𝑖) ⋯ 𝑆𝑟−1,𝑟−1
(𝑖)

)

 
 

−1

(

 
 

𝑆𝑟,𝑟−𝑚
(𝑖)

𝑆𝑟,𝑟−𝑚+1
(𝑖)

⋯

𝑆𝑟,𝑟−1
(𝑖)

)

 
 

, 
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and matrix 𝑻𝑖
(𝑡+1)

=
1

𝑝
𝑑𝑖𝑎𝑔 (𝑼𝑖

(𝑡+1)𝑺(𝑖)𝑼𝑖
(𝑡+1)′), where 

r = 2,… , 𝑇 𝑎𝑛𝑑 𝑚 = 0 , … , 𝑇 − 1 and Sl,t
(i) is the lth-row 

and rth-column element of matrix 𝐒(i). 

 Sub-model GARI(m): The maximization of 

−
𝑇𝑝

2
∑ 𝑛𝑖 𝑙𝑜𝑔|𝑑𝑖| −

1

2
𝑡𝑟 {∑

1

𝑑𝑖
𝑼𝑖

′𝑼𝑖𝑺
(𝑖)𝑘

𝑖=1 }𝑘
𝑖=1  with 

respect to 𝜱𝑖 =
1

𝑑𝑖
𝑼𝑖

′𝑼𝑖 leads to the same 

estimate of 𝑼𝑖 as sub-model GAR(m) and estimate 

𝑑𝑖
(𝑡+1)

=
𝑡𝑟 {𝑼𝑖

(𝑡+1)𝑺(𝑖)𝑼𝑖
(𝑡+1)′}

𝑛𝑖𝑝𝑇
. 

 Sub-model EGAR(m): The maximization of 

−
𝑛𝑝

2
𝑙𝑜𝑔|𝑫| −

1

2
𝑡𝑟{𝑼′𝑻−1𝑼(∑ 𝑺(𝑖)𝑘

𝑖=1 )} with 

respect to 𝜱𝑖 = 𝜱 leads to the same estimate of 
𝑼 as sub-model GAR(m) by replacing ∑ 𝑺(𝑖)𝑘

𝑖=1  

instead of 𝑺(𝑖) and estimate 𝑻(𝑡+1) =
1

𝑛𝑝
𝑑𝑖𝑎𝑔 (𝑼(𝑡+1){∑ 𝑺(𝑖)𝑘

𝑖=1 }𝑼(𝑡+1)′). 

 Sub-model EGARI(m): The maximization of 

−
𝑛𝑝𝑇

2
𝑙𝑜𝑔|𝑑| −

1

2𝑑
𝑡𝑟{𝑼′𝑼(∑ 𝑺(𝑖)𝑘

𝑖=1 )} with 

respect to 𝜱𝑖 = 𝜱 leads to the same estimate of 

𝑼 as sub-model EGAR(m) and estimate 𝑑(𝑡+1) =
 𝑡𝑟 {𝑼(𝑡+1)′𝑼(𝑡+1) ∑ 𝑺(𝑖)𝑘

𝑖=1 }

𝑝𝑛𝑇
. 

Refer to (McNicholas and Murphy, 2010; 
McNicholas and Subedi, 2012; Anderlucci and Viroli, 
2015a) for further details on the estimation of the 
covariance matrix 𝜱𝑖. 

4. Update 𝑣𝑖 

For the degree of freedom, two situations were 
considered, including equal and unequal 𝑣𝑖 across 
mixture components (constrained and unconstrained 

𝑣𝑖, respectively). Given 𝜏𝑖𝑗
(𝑡+1)

, 𝜋𝑖
(𝑡+1)

, 𝑴𝑖
(𝑡+1)

, 𝜴𝑖
(𝑡+1)

, and 

𝚽𝑖
(𝑡+1)

, the estimations of 𝑣𝑖 are calculated by finding the 

root of equations (13) and (14) in constrained and 
unconstrained situations, respectively. 

1 + 𝑙𝑜𝑔 (
𝑣

2
) − 𝐷𝐺 (𝛤 (

𝑣

2
))

+
1

𝑛
∑∑ 𝜏𝑖𝑗

(𝑡+1)
(𝑊2𝑖𝑗

(𝑡+1)
− 𝑊1𝑖𝑗

(𝑡+1)
)

𝑘

𝑖=1

𝑛

𝑗=1

=  0, 

(13) 

                                                 
1 Maximum A Posteriori probability (MAP)  

1 + 𝑙𝑜𝑔 (
𝑣𝑖

2
) − 𝐷𝐺 (𝛤 (

𝑣𝑖

2
))

+
1

𝑛𝑖

∑𝜏𝑖𝑗
(𝑡+1)

(𝑊2𝑖𝑗
(𝑡+1)

𝑛

𝑗=1

− 𝑊1𝑖𝑗
(𝑡+1)

) =  0. 

(14) 

IV.  Check the convergence criterion: If not satisfied, 
set 𝑡 = 𝑡 + 1 and go to step II of the EM algorithm 
iteration. 

3.2 Model selection and convergence criterion 
It is possible to define a large family (64 × 𝑇 ) of 

possible mixture models by allowing different sub-
models for covariance matrices 𝜴𝑖  and 𝚽𝑖 with different 
orders for matrix 𝑻𝑖 , 𝑚 = 0,1, . . , 𝑇 − 1, and 
constrained/unconstrained for 𝑣𝑖. The model can be 
selected according to the Bayesian information criterion 
(BIC) as follows [33]: 

𝐵𝐼𝐶 = 2 𝑙(𝑥, �̂�) − ℎ 𝑙𝑜𝑔 𝑛, (15) 

where 𝑙(𝑥, �̂�) and �̂� indicate the maximized log-

likelihood and the maximum likelihood estimate of 𝝑, 
respectively. Additionally, ℎ and n are the number of free 
parameters in the model and the number of 
observations, respectively. 

Other criteria are employed in addition to BIC to 
estimate the number of mixture components, such as 
Integrated Completed Likelihood (ICL), which is 
computed as follows [34]: 

ICL ≈ BIC − 2∑∑ MAP(𝜏𝑖𝑗
(𝑡)

)

k

i=1

n

j=1

log 𝜏𝑖𝑗
(𝑡)

, (16) 

where MAP1 (𝜏𝑖𝑗
(𝑡)

) = 1 if the 𝑚𝑎𝑥𝑖=1,…,𝑘 {𝜏𝑖𝑗
(𝑡)

} = 𝑖, 

otherwise, MAP (𝜏𝑖𝑗
(𝑡)

) = 0, 𝑗 = 1 , … , 𝑛 and 𝑖 = 1,… , 𝑘. 

In general, 20 random multistate points were 
considered given that the starting values of the EM 
algorithm could affect the estimated parameters. If the 
convergence criterion |𝑙(𝑥, �̂�(𝑡+1)) − 𝑙(𝑥, �̂�(𝑡))| < 1.0𝑒 −

8 is met, the EM algorithm is stopped, and the range of 
values for 𝑣𝑖 is limited to between 2 and 200 [21]. These 
models have been written in R and are accessible on 
request. 

3.3 Calculate the standard error of parameters 
The observed information matrix may be used to 

calculate the parameter's standard error. The observed 
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information matrix is computed as −∑ 𝐇𝐣(ϑ̂)n
j=1 , where 

𝐇j(ϑ̂) is the Hessian matrix of the likelihood function for 

observation j. The hessian function in numDeriv package 
in R software could be used to calculate 𝐇j(ϑ̂) 

(Anderlucci and Viroli, 2015a). 

4. Simulation studies and real data 
4.1 Simulation 1 

The first simulation study was conducted to 
evaluate the ability of the algorithm for recognizing the 
temporal structure. The features of simulation study 1 
were: a number k of mixture components equal to 3, a k-
vector of the degrees of freedom equal to 5, 5, 5, and a 4 
× 4 within covariance matrix 𝛀i with a structure equals 
to VVV. In addition, other features included a 6 × 6 
temporal covariance matrix 𝚽i with a structure equals to 
GAR(1) and GAR(3), and a sample size n equals 100, 200, 
500, and 1000. For each setting, 100 datasets were 
generated from the mixture of the MVTDs based on the 
defined within and temporal covariance matrices. Then, 
the mixture of MVTDs and MVNDs was run for five 
different models according to different orders for 𝚽i: 
GAR(1), GAR(2), GAR(3), GAR(4), and GAR(5). The best 
model was chosen according to the BIC and ICL. Table 2 
contains the number of times a model with GAR(1) and 
GAR(3) structures for 𝚽i was selected as the best model 
based on the BIC and ICL. To converge the EM algorithm, 
MVTD models with the constrained degrees of freedom 
were fitted in settings with the GAR(3) true structure 
and the sample sizes of 100 and 200 while MVTD models 
with unconstrained degrees of freedom were run in 
other settings. 

The percentage (number) of correct model selection 
with MVTD is equal to 100 in all cases, and it ranges from 
97 to 100 for MVNDs. In a situation with a true model 
GAR(3), this percentage varied from 99 to 100 and 93 to 
99 for MVTD and MVND, respectively. 

Table 2: The number of times a model with GAR(1) or GAR(3) 
structure for 𝜱𝒊 was chosen according to the BIC and ICL 
criterion, from the simulation 1 

n 
 

𝜱𝒊 

GAR(1) GAR(2) GAR(3) GAR(4) GAR(5) 

Model True Sub-model: GAR(1) 

100 
MVTD 100 0 0 0 0 

MVND 97 3 0 0 0 

200 
MVTD 100 0 0 0 0 

MVND 99 1 0 0 0 

500 MVTD 100 0 0 0 0 

MVND 100 0 0 0 0 

1000 
MVTD 100 0 0 0 0 

MVND 99 1 0 0 0 

 True Sub-model: GAR(3) 

100 
MVTD 0 0 97 2 1 

MVND 1 0 93 4 2 

200 
MVTD 0 0 100 0 0 

MVND 0 1 95 3 1 

500 
MVTD 0 0 100 0 0 

MVND 0 0 98 1 1 

1000 
MVTD 0 0 100 0 0 

MVND 0 0 99 1 0 

 

4.2 Simulation 2 
It is known that t-distributions can recover normal 

distributions by estimating larger values of the degrees 
of freedom parameters. Further, t-distribution mixture 
models can be used when mixture components are 
derived from normal and t-distributions. The simulation 
study 2 was performed to evaluate the ability of MVTDs 
to recover the MVNDs in multivariate longitudinal data. 
To this end, datasets were generated from two-
component (k=2), matrix-variate mixture models. The 
MVND and MVTD were the first and second components, 
respectively, and the same covariance structures with 
different parameter values were used accordingly. Other 
features (i.e., 𝛀i, 𝚽i, and sample size) in this simulation 
are similar to the first simulation study. For each setting, 
100 datasets were generated from mixture distributions 
based on the defined within and temporal covariance 
matrices. Further, the mixture of MVTDs and MVNDs was 
run for five different models of GAR(1), GAR(2), GAR(3), 
GAR(4), and GAR(5). Table 3 presents the average values 
of the degree of freedom (standard deviation) of a model 
with GAR(1) and GAR(3) structures for 𝚽i. Based on the 
obtained data, the sample size of 100 was not considered 
for a setting with the GAR(3) true temporal due to the 
lack of convergence of the EM algorithm. Given k (=2) 
and 𝛀𝑖 (VVV), the estimated degrees of freedom 
demonstrated that the first component was normal. 
Furthermore, the degrees of freedom estimates were 
computed to be close to true values in MVTD mixture 
models. 

Based on Tables 3 and 5, the true model GAR(3) had 
a worse performance compared to the true model 
GAR(1). Therefore, the results related to the simulation 
studies of the true model GAR(3) are presented in the 
continuation. 
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Additionally, the misclassification error rate (MISC) 
and the measure of accuracy (𝛾) for mean and covariance 
matrices were computed for each dataset and model in 
order to compare the two models in parameter 
estimates. Therefore, the accuracy measures of 𝑴, 𝜴 
(=VVV), 𝑼, and 𝑻 (=GAR) were calculated by the 
following expressions (Anderlucci and Viroli, 2015b): 

𝛾𝑴 =
∑ ‖�̂�𝑖 − 𝑴𝑖‖

𝑘
𝑖=1

𝑘𝑇𝑝
,

𝛾𝜴 =
∑ ‖�̂�𝑖 − 𝜴𝑖‖

𝑘
𝑖=1

𝑘𝑝(𝑝+1)

2

, 

𝛾𝑼 =
∑ ‖�̂�𝑖 − 𝑼𝑖‖

𝑘
𝑖=1

𝑘𝜑
,

𝛾𝑻 =
∑ ‖�̂�𝑖 − 𝑻𝑖‖

𝑘
𝑖=1

𝑘𝑇
, 

(17) 

where the lower accuracy measure (𝛾) implies higher 
accuracy for parameters. 

Table 4 provides the average (standard deviation) 
values of MISC and the accuracy measures of a model 
with GAR(3) for 𝚽i. Considering k (=2) and 𝛀𝑖 (VVV), the 
accuracy measures (𝛾𝑴, 𝛾𝛀, and 𝛾𝑻) were not sensitive to 
the misspecification of the order of the temporal 
covariance (m=1, 2, …, 5), and these values were nearly 
identical in MVTD and MVND mixture models. However, 
the values of the accuracy measure (𝛾𝑻) relied on the 
misspecification of the temporal covariance order. In the 
two models, the accuracy measure (𝛾𝑻) of the lower 
orders (𝑚 = 1, 2) was larger compared to the higher 
orders (𝑚 = 3, 4, 5). It should be noted that MVND 
mixture models tend to overestimate the accuracy 
measure (𝛾𝑻) compared to MVTD mixture models. 
Eventually, the accuracy measures in both models 
decreased by an increase in the sample size. The mean 
compute time for fitting the mixture of MVTDs vs as 
MVNDs with the true model GAR(3) was 6.66 vs. 0.37 for 
n=100, 10.17 vs. 0.62 for n=200, 23.44 vs. 1.30 for n=500, 
and 46.86 vs 2.59 for n=1000. 

Table 3: Mean (S.D) of degree of freedom with GAR(1) 
or GAR(3) structure for 𝜱𝑖from simulation 2 

n 

𝜱𝒊 

GAR(1) GAR(2) GAR(3) GAR(4) GAR(5) 

True Sub-model: GAR(1) 

100 
174.9 (48.2) 175.6 (46.5) 176.3 (45.6) 176.7 (45.2) 177.4 (45.6) 

5.42 (1.30) 5.42 (1.32) 5.43 (1.31) 5.43 (1.30) 5.43 (1.30) 

200 189.4 (30.1) 189.3 (30.4) 189.8 (29.6) 189.9 (29.5) 190.2 (29.2) 

5.09 (0.79) 5.09 (0.79) 5.09 (0.79) 5.10 (0.79) 5.10 (0.78) 

500 
192.0 (23.3) 191.9 (23.2) 192.4 (22.7) 192.6 (22.4) 192.6 (22.3) 

5.05 (0.51) 5.05 (0.51) 5.05 (0.51) 5.05 (0.51) 5.05 (0.51) 

1000 
199.6 (3.9) 199.6 (3.7) 199.7 (3.3) 199.7 (2.9) 199.7 (2.6) 

4.99 (0.35) 4.99 (0.35) 4.99 (0.35) 4.99 (0.35) 4.99 (0.35) 

 True Sub-model: GAR(3) 

200 
175.8 (48.6) 160.8 (31.5) 189.3 (31.2) 189.7 (30.8) 189.9 (30.4) 

4.75 (0.84) 4.77 (0.85) 5.09 (0.87) 5.10(0.88) 5.10 (0.88) 

500 
116.2 (44.3) 167.1 (42.9) 195.0 (19.7) 195.1(19.6) 195.1 (19.6) 

4.74 (0.43) 4.85 (0.43) 5.06 (0.43) 5.07(0.43) 5.07 (0.43) 

1000 
119.6 (41.9) 178.7 (34.2) 198.2 (9.3) 198.2(9.2) 198.2 (9.2) 

4.70 (0.38) 4.97 (0.39) 5.05 (0.41) 5.05(0.41) 5.05 (0.41) 

 

Table 4: Mean (S.D) of MISC and accuracy measures with 
GAR(3) structure for 𝜱𝑖from simulation 2 

  

Model 

𝜱𝑖 

n  GAR(1) GAR(2) GAR(3) GAR(4) GAR(5) 

200 

MISC 

MVTD 0 0 0 0 0 

MVND 0.0001(0.001) 0.0001(0.001) 0.0001(0.001) 0.0001(0.001) 0.0001(0.001) 

𝛾𝑴 

MVTD 0.09 (0.01) 0.09 (0.01) 0.09 (0.01) 0.09 (0.01) 0.09 (0.01) 

MVND 0.10 (0.01) 0.10 (0.01) 0.10 (0.01) 0.10 (0.01) 0.10 (0.01) 

𝛾𝛀 

MVTD 0.23 (0.002) 0.23 (0.001) 0.23 (0.001) 0.23 (0.001) 0.23 (0.001) 

MVND 0.23 (0.003) 0.23 (0.002) 0.23 (0.001) 0.23 (0.001) 0.23 (0.001) 

𝛾𝐓 

MVTD 0.49 (0.02) 0.44 (0.02) 0.40 (0.02) 0.40 (0.02) 0.40 (0.02) 

MVND 0.57 (0.06) 0.52 (0.13) 0.48 (0.14) 0.48 (0.14) 0.48 (0.14) 

𝛾𝐔 

MVTD 0.33 (0.002) 0.20 (0.01) 0.10 (0.02) 0.15 (0.04) 0.18 (0.04) 

MVND 0.33 (0.002) 0.20 (0.02) 0.11 (0.03) 0.17 (0.05) 0.21 (0.06) 

500 

MISC 

MVTD 0 0 0 0 0 

MVND 0 0 0 0 0 

𝛾𝑴 

MVTD 0.08 (0.01) 0.08 (0.01) 0.08 (0.01) 0.08 (0.01) 0.08 (0.01) 

MVND 0.09 (0.01) 0.09 (0.01) 0.09 (0.01) 0.09 (0.01) 0.09 (0.01) 

𝛾𝛀 

MVTD 0.18 (0.0003) 0.18 (0.0002) 0.18 (0.0002) 0.18 (0.0002) 0.18 (0.0002) 

MVND 0.18 (0.0003) 0.18 (0.0003) 0.18 (0.0003) 0.18 (0.0003) 0.18 (0.0003) 

𝛾𝐓 

MVTD 0.47 (0.01) 0.38 (0.01) 0.35 (0.01) 0.35 (0.01) 0.35 (0.01) 

MVND 0.51 (0.02) 0.45 (0.02) 0.41 (0.02) 0.41 (0.02) 0.41 (0.02) 

𝛾𝐔 

MVTD 0.30 (0.002) 0.19 (0.004) 0.08 (0.01) 0.08 (0.01) 0.08 (0.01) 

MVND 0.30 (0.003) 0.19 (0.004) 0.09 (0.01) 0.09 (0.01) 0.09 (0.01) 

1000 

MISC 

MVTD 0 0 0 0 0 

MVND 0 0 0 0 0 

𝛾𝑴 

MVTD 0.06 (0.01) 0.06 (0.01) 0.06 (0.01) 0.06 (0.01) 0.06 (0.01) 

MVND 0.07 (0.01) 0.07 (0.01) 0.07 (0.01) 0.07 (0.01) 0.07 (0.01) 

𝛾𝛀 

MVTD 0.15 (0.0002) 0.15 (0.0002) 0.15 (0.0002) 0.15 (0.0002) 0.15 (0.0002) 

MVND 0.15 (0.0002) 0.15 (0.0002) 0.15 (0.0002) 0.15 (0.0002) 0.15 (0.0002) 

𝛾𝐓 MVTD 0.31 (0.01) 0.27 (0.01) 0.27 (0.01) 0.27 (0.01) 0.27 (0.01) 
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MVND 0.42 (0.03) 0.40 (0.02) 0.37 (0.02) 0.37 (0.02) 0.37 (0.02) 

𝛾𝐔 

MVTD 0.28 (0.001) 0.17 (0.001) 0.05 (0.001) 0.05 (0.001) 0.05 (0.001) 

MVND 0.28 (0.001) 0.20 (0.001) 0.06 (0.01) 0.06 (0.01) 0.06 (0.01) 

 
4.3 Simulation 3 

The number of components was considered 
constant and the mixture models were fitted in the two 
preceding simulation studies. In the third simulation 
study, the ability of MVTD and the MVND mixture models 
was evaluated regarding recognizing the true number of 
mixture components when the data were generated 
from MVTD mixture models. Then, the impact of the 
misspecification of the temporal matrix on the 
estimation of the number of components was 
investigated as well. The same parameters were used in 
this simulation as in the first simulation. 

For each setting, 100 datasets were generated from 
the model with a GAR(3) structure. In addition, a 
different number of mixture components (k = 2, 3, and 4) 
was considered to evaluate the choice of k. Table 5 
presents the number of times a model with a particular 
number of mixture components was chosen as the best 
model in each of the five different models of GAR(1), 
GAR(2), GAR(3), GAR(4), and GAR(5). Approximately the 
correct number of components (k=3) was selected for 
MVTDs in all cases. However, MVNDs tend to 
overestimate (k=4) the number of true components. As 
the sample size increased, the correct number of 
components reached 100 in MVTD, while it was 
completely overestimated in MVND. Also, in a small 
sample size (n=200), the ability to detect the correct 
number of components increased with the increase of m 
in both models. 

Table 5: The number of times a model with the true 
number of component (k=3) and GAR(3) structure for 𝜱𝒊 
for the different temporal structures was chosen from 
simulation 3 

n Model k 
True Sub-model: GAR(3) 

GAR(1) GAR(2) GAR(3) GAR(4) GAR(5) 

2
0
0
 

MVTD 

2 0 0 0 0 0 

3 95 99 96 100 100 

4 5 1 4 0 0 

MVND 

2 0 0 0 0 0 

3 42 53 62 68 73 

4 58 47 38 32 27 

5
0
0
 

MVTD 
2 0 0 0 0 0 

3 100 100 100 100 100 

4 0 0 0 0 0 

MVND 

2 0 0 0 0 0 

3 0 0 0 0 0 

4 100 100 100 100 100 

1
0
0
0
 

MVTD 

2 0 0 0 0 0 

3 100 100 100 100 100 

4 0 0 0 0 0 

MVND 

2 0 0 0 0 0 

3 0 0 0 0 0 

4 100 100 100 100 100 

 

4.4 Real data: Gastrointestinal (GI) cancers  
The age-standardized death rates of the three most 

common GI cancers were extracted from the Our World 
In Data website [36]. The information included the death 
rates (per 100,000 populations) of colon and rectum, 
stomach, and liver cancers in 186 countries during 1990-
2015 (at 5-year intervals), 𝑿𝑗is a matrix with dimension 

5 × 3. A mixture of MVTDs and MVNDs was fitted with k 
ranging from 1 to 10. The best sub-model based on the 
BIC and ICL is (GAR(2), VVV) with k=7 in the mixture of 
MVNDs and (GAR(4), VVV) with the constrained degrees 
of freedom and k=6 in the mixture of MVTDs (Table 6). 
The estimated degree of freedom for the mixture of the 
MVTDs was 𝑣 = 3.33. Further, stomach and liver cancer 
death rates in some countries were extremely higher 
compared to other countries. Thus, the mixture of the 
MVND model provided an additional cluster to allow 
outliers. 

Table 6: Results of the mixture of the MVTD and MVND 
models for the three common GI cancers 

Model BIC ICL 𝛀i 𝚽i m k 𝑣 RMSD Compute time for fitting (Second) 

MVTD 9275.63 9240.58 VVV GAR 4 6 3.33 9.42 165.42 

MVND 9666.63 9683.78 VVV GAR 2 7 - 11.20 127.80 

 

Table 7: Estimated component means of the countries 
based on the death rates of the three common GI cancers 
resulted from the mixture of the MVTD models 

Year 
k Type of cancer 

2015 2010 2005 2000 1995 1990 

9.75 9.53 9.25 9.98 8.89 8.69 1 

Colon and rectum 

8.96 8.86 8.83 8.86 8.61 8.44 2 

9.67 9.60 9.59 9.54 9.47 9.12 3 

8.35 8.29 8.21 8.10 7.83 7.73 4 

16.53 17.23 18.01 16.98 18.30 15.89 5 
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15.37 16.23 17.05 17.86 18.50 18.47 6 

6.38 6.34 6.43 6.51 6.79 6.68 1 

Liver 

4.27 4.25 4.37 4.49 4.44 4.35 2 

8.60 8.87 9.34 9.83 10.01 9.55 3 

17.63 18.55 20.03 21.00 22.52 21.89 4 

3.60 3.61 3.67 3.20 3.58 2.96 5 

4.35 4.23 4.15 4.12 4.02 3.84 6 

13.05 14.13 15.48 16.85 18.87 20.22 1 

Stomach 

6.04 6.43 7.01 7.83 8.37 8.82 2 

8.32 9.98 9.74 10.78 11.72 12.10 3 

12.09 12.66 12.90 13.15 13.78 14.99 4 

12.90 14.98 17.77 19.21 24.79 25.23 5 

6.16 6.91 7.78 9.08 10.75 12.49 6 

 

We also fitted a finite mixture of skew matrix-
variate distributions introduced by Gallaugher and 
McNicholas (2017b) to GI data. These matrix-variate 
distributions are skew-t, generalized hyperbolic, 
variance-gamma, and normal inverse Gaussian 
distributions that we did not consider eigenvalue and the 
modified Cholesky decompositions for the between and 
within covariance matrices for those, respectively. 
Because of the huge number of parameters, any of these 
finite mixture had not been converge. Given k, the 
number of parameters in these skew matrix-variates is 
𝑇 × 𝑝 × 𝑘 to greater than the matrix-varieties 
distributions. 

The root mean square deviation (RMSD), the quadratic 
mean of the differences between the observed values 
and predicted values, values for the mixture of MVNDs 
and MVTDs were 11.20 and 9.42, respectively (Table 6). 
For more details, maps of the included countries in each 
cluster of MVTD and MVND models are presented in 
Figures 1 and 2, respectively. The estimated component 
mean for each cluster of MVTD models is shown in Table 
7. The colon and rectum, liver, and stomach cancer death 
rates were growing, nearly stable, and decreasing in the 
first cluster countries, respectively. The behaviour of the 
countries in the second and third clusters was similar to 
the first cluster, with the exception that the rate of 
decrease in liver cancer in the second cluster was slower, 
and the rate in the third cluster was between the first and 
second clusters. The fourth cluster countries' patterns 
are identical to the second cluster, although the decline 
in the liver is quicker. The colon and rectum and liver are 
growing in fifth cluster countries, whereas the stomach 
is dropping (with the highest rate of decrease among the 

clusters). Countries in the sixth cluster behaved similarly 
to those in the fifth, with the exception that the rate of 
change in the colon and rectum was quicker. According 
to Figure 2, the second cluster countries, which mostly 
include African and Arab countries, have the lowest 
death rates in the three cancers. 
 

 
 

Figure 1: Map of clustering countries based on the death 
rates of the three common GI cancer resulted from the 
mixture of the MVNDs 

 
Figure 2: Map of clustering countries based on the death 
rates of the three common GI cancer resulted from the 
mixture of the MVTDs 
 
5. Conclusion 

In the present study, a family of finite matrix-
variate t-distributions was evaluated for clustering 
multivariate longitudinal datasets. To this end, two types 
of constraints were utilized for covariance structures, 
including the eigenvalue and modified Cholesky 
decompositions for the within and temporal covariance 
matrices, respectively. 

Based on accuracy measures (𝛾) in the mixture 
models of MVTD and the MVND, no differences were 
observed between the estimation of 𝑴, 𝜴, and 𝑻 matrices 
under different orders of temporal covariance structures 
in each model in simulation studies. Further, these 
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values were similar in both models. On the other hand, 
the estimation of matrix 𝑻 relies on the misspecification 
of 𝚽. Thus, the accuracy measure 𝛾𝑻s should have the 
least value compared to lower orders if the order of the 
incorrect temporal structure is equal to or greater than 
the correct order of the temporal structure. The 
estimations of matrix T and the number of mixture 
components k are overestimated in MVND models if the 
datasets have a heavy-tail or outlier observations. These 
properties were demonstrated by McNicholas and 
Subedi (2012) in the clustering of longitudinal data using 
the mixture of multivariate t-distributions. On the other 
hand, the time it took to fit a mixture of MVTDs was much 
longer than it required to fit a mixture of MVNDs, which 
is a trade-off for more precision. 

The mixture of MVTDs commonly selected the model 
with the right temporal structure and the right number 
of mixture components. Based on the MISC and accuracy 
measures, a perfect separation was found between the 
mixture components and the good accuracy of 
parameter estimation in this mixture model. The results 
of these simulation studies regarding evaluating 
different abilities of the finite mixtures of MVTDs were 
similar to those of simulations in the finite mixture of the 
MVNDs (Anderlucci and Viroli, 2015b). 

The age-standardized death rates of the three most 
common GI cancers (i.e., colon and rectum, stomach, and 
liver) from 186 countries were clustered between 1990 
and 2015 (a 5-year interval) using the mixture of MVTD 
and MVND models. Based on the BIC and ICL, the same 
within and temporal covariance structures were selected 
in both models although the order of the temporal 
structure was higher in the MVTD mixture. On the other 
hand, one more component was available in the MVTD 
mixture for including outlier death rates. Based on the 
BIC and ICL and RMSD, MVTD mixture models better 
fitted to the clustering death rates of the three common 
GI cancers of the countries compared to MVND mixture 
models. 

Finally, the large value of the RMSD revealed that 
other matrix-variate distributions (i.e., asymmetric 
matrix-variate distributions) could be appropriate in 
this regard. In our future work, we will consider the 
parsimonious covariance of the finite mixture of skewed 
matrix-variate distributions for the clustering three-way 
data. 
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