
Avestia Publishing

Journal of Machine Intelligence and Data Science (JMIDS)

Volume 5, Year 2024

ISSN: 2564-3282

DOI: 10.11159/jmids.2024.017

Date Received: 2024-03-28

Date Revised: 2024-09-22

Date Accepted: 2024-10-19

Date Published: 2024-12-10

152

Response Delay Reduction in Large Language Model-
Based Dialogue Systems

Hikaru Kamioka1, Satoshi Maeda1, Masayuki Hashimoto1
1Toyo University, Department of Electrical, Electronic and Communications Engineering

/ 2100 Kujirai, Kawagoe-shi, Saitama, Japan 350-8585
{s16C02100470, maeda518, hashimoto065} @ toyo.jp

Abstract - In typical LLM-based voice dialogue systems, the
system waits for the user to finish speaking before processing
and generating a response, causing a delay. We propose an
approach where the LLM generates response text for an
incomplete utterance without waiting for the user to finish
speaking. This method allows for earlier initiation of response
generation, potentially reducing delays. However, LLMs may not
always produce appropriate responses when generating replies
to incomplete utterances, despite their predictive capabilities. If
voice data acquisition is terminated too early, the likelihood of
inappropriate responses from the LLM increases. On the other
hand, delaying the termination reduces the effectiveness of
latency reduction. Therefore, it is crucial to identify the optimal
timing for terminating voice data acquisition.
 To determine the optimal timing for stopping audio
capture and initiating response generation, we use changes in
Sentence-BERT embedding representations of the dialogue
history up to that point. We investigate changes in the similarity
measure, 𝑆𝑡(𝑋0, 𝑋𝑡), between the embedding representation 𝑋0
(the embedding at the start of the user's utterance) and 𝑋𝑡 (the
embedding at midpoint t during the user's utterance).
 It is suggested that the changes in similarity may be
correlated with the validity of the LLM's responses. Therefore,
we proposed some methods to determine the cutoff point based
on these changes and conducted simulation experiments to
evaluate their effectiveness specifically in Japanese
conversations. As a result, we demonstrated that our proposed
method can successfully stop audio capture 14.6 characters
before the end of the user's utterance, achieving a 0.80
probability of generating a valid response. This reduction of 14.6
characters corresponds to approximately 2.4 seconds in
Japanese speech.

Keywords: Response delay, Dialogue systems, Large
Language Models.

© Copyright 2024 Authors - This is an Open Access article
published under the Creative Commons Attribution

License terms (http://creativecommons.org/licenses/by/3.0).
Unrestricted use, distribution, and reproduction in any medium
are permitted, provided the original work is properly cited.

1. Introduction
Voice dialogue systems [1] have been put into

practical use and are utilized in various services. The
systems can be classified into task-oriented dialogue
systems, which are designed to accomplish specific tasks,
and non-task-oriented systems, which do not aim to
accomplish a particular task. For example, the former is
used for purposes such as asking about tomorrow’s
weather and purchasing something on online sites. On
the other hand, the latter is a chit-chat system which
engages in conversations without a specific goal. Chit-
chat systems are not only for enjoying casual
conversations but are also expected to have
psychological benefits, such as maintaining or improving
mental health and reducing feelings of loneliness
through conversation.

In these voice dialogue systems, it is common for a
time-lag to occur between the user's utterance and the
system's response. In task-oriented systems, users
unconsciously tolerate some delay in responses because
they generally hope to obtain information from the
system or convey information to it. However, in chit-chat
systems, response delay becomes a problem [2]. In
Japanese conversations between humans, it is common
for the next speaker to start speaking within one second
after the previous speaker finishes. Therefore, if the
purpose of the system is casual conversations like those
between humans, unless its response occurs in a short
time, subjective satisfaction will deteriorate
significantly. Thus, this study focuses on chit-chat
systems and attempts to reduce its response time.

 153

In the following section, we explain the mechanism
by which response delay occurs in a voice dialogue
system. Then, we introduce our approach for reducing
the delay and explain the issues that arise in this
approach in Section 4. In Section 5, we present our
proposed method to solve these issues. In Section 6, we
evaluate the performance of the proposed method using
Japanese conversation corpora and present the optimal
parameters of the method.

2. Response Delay in Dialogue Systems
Figure 1 illustrates a process flow of a typical voice

dialogue system. The user's utterance is captured as an
audio signal through a microphone [3]. In general, the
end of a user’s utterance is detected by margin, which
means passing a certain time from no voice signal [4].
After detected it, the audio signal is processed through
speech recognition to convert it into text [5], [6].
Following this, based on the user's utterance text, a large
language model (LLM [7]) generates the system's
response text. Then, the system converts it into system-
generated speech [8]-[10].
 By the above processes (the margin for detecting
the end of the utterance, speech recognition, generating
system response text and converting it into system
response voice), "response delay" occurs from the time
the user finishes speaking to when the system begins to
respond.

Figure 1. Response delay in a voice dialogue system

3. Related Work
To determine the timing for the system to start

speaking (turn-taking), it is necessary to detect the end
of the user's utterance [11]. A common approach is to
wait for a certain margin of time after the user’s
utterance input has ceased. If this margin is too short, the
system may mistakenly determine that the user has
finished speaking due to short silent intervals caused by
breathing or getting stuck for words. Generally, a margin
of several hundred milliseconds to a few seconds is used

(the exact value needs to be confirmed). However, this
margin becomes significant for achieving system
responses within one second, because in Japanese daily
conversations, the next speaker usually starts speaking
within one second after the previous speaker finishes
[12], [13].

There is a method that can be used that predicts

the end of speech based on changes in the prosody of the

user's utterance to determine the end of speech without

waiting for a margin. In this approach, features of

changes in fundamental frequency and sound pressure

at the end of speech are utilized to estimate the end of

speech based on real-time measurements of the user's

voice’s fundamental frequency and sound pressure [14].

4. Approach and Issues
Regarding the response delay described above,

this paper proposes a method where, instead of waiting
for the user's utterance to be completed (by stopping
audio capture on the way) , speech recognition is
performed on the incomplete utterance audio data, and
a response is generated using a large language model
based on the incomplete utterance text. This approach
allows the speech recognition process to start earlier
because this system does not wait for the user's
utterance to be completed, which in turn enables the
system to generate a response more quickly. (Of course,
when the system generates a response, it will confirm
that the user's utterance has finished at that time before
proceeding with the response.) Figure 2 illustrates this
proposed approach.

Figure 2. Proposed approach for reducing response delay

However, the proposed approach has a significant

issue. Specifically, since responses are generated based
on incomplete utterance text, there is a possibility that
inappropriate responses may be created. When using
large language models like ChatGPT for response
generation, these models are designed to predict after

Audio
capture

Endpoint
detection

Speech
recognition

Response
generation

System
utterance

User
utterance

Response delay

Speech
recognition

Response
generation

System
utterance

Response delay

User
utterance

Audio
capture

Stop audio recording midway

 154

next word in a sequence based on partially completed
sentences. While they have the capability to predict the
missing parts (such as the end of an incomplete
utterance) and generate coherent responses, if the
termination which audio capture is stopped is too early,
the likelihood of generating meaningful responses
decreases.

On the other hand, delaying the termination
reduces the effectiveness of latency reduction. Therefore,
it is crucial to identify the optimal timing for terminating
voice data acquisition. Therefore, it is crucial to identify
the optimal timing for terminating voice data acquisition.

5. Proposed Method

In this section, we explain the proposed method to
determine the cutoff point based on changes in similarity
[15] calculated using embedding representations.

5. 1. Embedding of Dialogue History

Embedding is a method of converting text, images,
or other types of data into numerical vectors, enabling
computers to efficiently process and analyze them [16],
[17]. In the context of text data, embedding converts
words or sentences into low-dimensional dense vectors
that capture various semantic features. Unlike simple
vectorization, embeddings provide more advanced
representations by considering the semantic
relationships between words [1]. In this context, we use
Sentence-BERT [18], a representative method for
generating sentence embeddings, to create the
embedding representation, denoted as X, of the
conversation-history text up to a certain point.

To observe changes in the embedding
representation, we track the similarity between a
reference embedding and the most recent embedding at
the point of interest. Figure 3 shows the concept of the
similarity of the two embeddings. We set the initial point
𝑡0 , which is the beginning of the target turn (user's
utterance), as the reference point. Moreover, we define
the embedding representation of the entire conversation
history up to the reference point as 𝑋0 . As the user's
utterance progresses, we define the embedding
representation of the entire conversation history up to
the most recent point, 𝑡 , as 𝑋𝑡. As a metric to represent
the change in 𝑋𝑡, we use the cosine similarity 𝑆𝑡(𝑋0, 𝑋𝑡)
between 𝑋0 and 𝑋𝑡. It can be written as:

𝑆𝑡(𝑋0, 𝑋𝑡) =
𝑋0 ⋅ 𝑋𝑡
‖𝑋0‖‖𝑋𝑡‖

 (1)

Here, 𝑋0 ⋅ 𝑋𝑡 represents the dot product of 𝑋0 and 𝑋𝑡 ,
while ‖𝑋0‖ and ‖𝑋𝑡‖ represent the magnitudes of each
vector. 𝑆𝑡(𝑋0, 𝑋𝑡) takes a value between 0.0 and 1.0, and
the closer the value is to 1.0, the more similar 𝑋0 and 𝑋𝑡
are.

5. 2. Changes in Embedding

Figures 4 through 6 illustrate the changes in 𝑆𝑡 for
three example conversation sessions, along with the
evaluation of the validity of the LLM's responses at each
cutoff point in each session. In these graphs, the vertical
axis represents similarity, the top horizontal axis shows
the number of characters that could be deleted, the
middle axis shows the deleted one character (user's
utterances in Japanese), and the bottom axis represents

System
utterance

User
utterance

User
utterance

System
utterance

User
utterance

Embedding at the start of
user's utterance : 𝑋0

Dialogue
text

Embedding at the most recent point 𝑡
during the user's utterance : 𝑋𝑡

Most
recent
point 𝑡

Similarity measure:
𝑆𝑡 𝑋0, 𝑋𝑡 cosine similarity between 𝑋0 and 𝑋𝑡

Initial point 𝑡0

Figure 3. Similarity between a reference embedding and the most recent embedding

 155

the human subjective evaluation of the validity of the
LLM's responses. The subjective evaluation uses circles
(◯) for Good, triangles (△) for Subpar, and crosses (×)
for Bad.

Figure 4. Changes of 𝑆𝑡 in conversation session example 1

Figure 5. Changes of 𝑆𝑡 in conversation session example 2

Figure 6. Changes of 𝑆𝑡 in conversation session example 3

The relationship between changes in 𝑆𝑡 and the

variations in the validity of the LLM's responses at each

cutoff point differs across conversation sessions. However,

as illustrated in the example conversation in Figure 4, cutting

off the dialogue too early typically results in low validity of

the LLM's responses (×), while a later cutoff point tends to

improve the validity (◯). Additionally, as shown in Figures

5 and 6, a common case is that cutting off the dialogue near

the point where the similarity drops significantly often

results in high validity of the LLM's responses (◯) ."

Therefore, these graphs suggest that changes in 𝑆𝑡 could
be used as a metric for determining cutoff points.

Figure 7. Concepts of Method 1 and Method 2

5. 3. Cutoff Point Determination Method

Three methods (Method 1, Method 2, and Method
3) are proposed to determine the cutoff point based on
changes in embedding representation similarity. Figure
7 illustrates the concepts of Method 1 and Method 2.

5. 3. 1. Method 1： Determination based on the

derivative of 𝑺𝒕
In Method 1, the cutoff point is determined where

the change in 𝑆𝑡 (the derivative of 𝑆𝑡) is large over. The
similarity 𝑆𝑡 is calculated by the conversation history
obtained from the reference point 𝑡0 to a later point 𝑡 .
Compare the values of 𝑆𝑡−1 − 𝑆𝑡 and 𝑇1, and if 𝑆𝑡−1 − 𝑆𝑡
is greater than or equal to 𝑇1 , it is determined as the
cutoff point (Equation 2).

𝑆𝑡−1 − 𝑆𝑡 ≥ 𝑇1 (𝑡 = 1, 2, 3⋯) (2)

Repeat the same evaluation as the user's

utterances progress. Further, it continues to capture the
conversation until a cutoff point is detected. Once the
cutoff point is detected, the conversation capture stops,
and the captured audio data up to that point is converted
to text via speech recognition. The text is then input into
the LLM to generate a response.

If the cutoff point is not detected before the user's
utterance ends, it means that no characters can be
omitted. In this case, the time shortened by the cutoff
method would be zero.

Proposed Method 1
Derivative value ≧ 𝑇1

Proposed Method 2
Difference value ≧ 𝑇2

 156

5. 3. 2. Method 2：Determination based on the decay
of 𝑺𝒕

In Method 2, the cutoff point is determined based
on the total amount of decay in 𝑆t. Specifically, compare
the values of 𝑆0 − 𝑆𝑡 and 𝑇1, and if 𝑆0 − 𝑆𝑡 is greater than
or equal to 𝑇2 , it is determined as the cutoff point
(Equation 3).

𝑆0 − 𝑆𝑡 ≥ 𝑇2 (𝑡 = 1, 2, 3⋯) (3)

The process of repetition and the procedure after

detecting the cutoff point are the same as in Method 1.

5. 3. 3. Method 3：Determination with 𝒏 margin

characters
Figure 8 illustrates the concept of Method 3.

Similarly to Method 1, the cutoff point is detected based
on the derivative of 𝑆𝑡. After detecting the cutoff point in
Method 1, the cutoff point for Method 3 is detected after
𝑛margin characters. In other words, the cutoff point
𝑡𝑚𝑒𝑡ℎ𝑜𝑑3 for Method 3 is detected using the following
equation:

𝑡𝑚𝑒𝑡ℎ𝑜𝑑3 = 𝑡𝑚𝑒𝑡ℎ𝑜𝑑1 + 𝑛 (4)

Here, 𝑡𝑚𝑒𝑡ℎ𝑜𝑑1 is the cutoff point detected by Method 1.
The process of repetition and the procedure after
detecting the cutoff point are the same as in Method 1.

Figure 8. Concept of Method 3

6. Evaluation experiment

In this section, the effectiveness of each proposed
method was evaluated. In particular, the evaluation

methods, evaluation data, and evaluation results are
described below.

6. 1. Evaluation method and Evaluation data

For each method, the following two metrics are
evaluated. The first metric is Precision (𝑃𝑟). Generally,
Precision refers to the proportion of positive predictions
that are actually correct [19]. In this study, Precision is
defined as the proportion of LLM’s responses deemed
valid (◯) when a cutoff was applied by each method.
Since a cutoff is always executed somewhere in each
method (if cutoff point is not detected, it is interpreted
as a cutoff at the end of the sentence), the number of
“positive predictions" in the above definition
corresponds to the total number of conversation
sessions used in the experiment. Therefore, Precision
(𝑃𝑟) is calculated using the following formula:

𝑃𝑟 =
𝑁𝑔𝑜𝑜𝑑

𝑁𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝑠
 (5)

Here, 𝑁𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝑠 denotes the total number of sessions, and
𝑁𝑔𝑜𝑜𝑑 denotes the number of sessions in which the LLM's

response was subjectively evaluated as Good (◯) after
applying the cutoff.

The second metric is the average number of
deleted characters (𝑁𝑟) . It indicates how many
characters from the user's utterance were omitted by
applying each cutoff method, compared to capturing the
entire utterance. Therefore, a higher 𝑁𝑟 value is
associated with a greater potential to shorten response
delays.

The corpus used in this study was collected from
dialogues in Japanese between two parties, with A
representing the user and B representing the dialogue
system. We focused on the 5th utterance of A (which is
the user’s turn) from the start of the dialogue, applying
each cutoff method. To establish a basic approach, we
used a text-based corpus [20], which is considered to
have less ambiguity compared to colloquial dialogue
corpus. From the top 100 data samples in the target
corpus, we extracted 56 dialogue sessions where the
number of characters in the focused turn was between
30 and 45 characters or between 60 and 100 characters.

6. 2. Evaluation results and Discussion

In Figure 9, the changes in Precision (𝑃𝑟) for the
threshold 𝑇1 of Method 1 and the average number of
deleted characters (𝑁𝑟) are shown by the blue and
orange lines, respectively. To see the Figure 9, as 𝑇1

Proposed Method 3
𝑡𝑚𝑒𝑡ℎ𝑜𝑑3 = 𝑡𝑚𝑒𝑡ℎ𝑜𝑑1 + 𝑛

 157

increases, 𝑃𝑟 also increases. This can be interpreted as
follows: as 𝑇1 increases, the cutoff point is not detected
until a larger differential value occurs. As a result, the
cutoff point will be shifting later. Consequently, the text
input to the LLM becomes longer. This increases 𝑃𝑟 ,
which represents the proportion of correct answers
provided by the LLM. Additionally, Figure 9 shows that
as 𝑇1 increases, 𝑁𝑟 decreases. This is because as 𝑇1
increases, the cutoff point shifts later, leaving fewer
characters at the end of the text that can be deleted. As
explained above, there is a trade-off between 𝑃𝑟 and 𝑁𝑟 .

In Method 1, as shown in Figure 9, to achieve 𝑃𝑟 of
approximately 0.8, a threshold of 0.75×10−2 resulted in
𝑃𝑟 of 0.79 and 𝑁𝑟 of 10.6 (as indicated by the red dashed
line in Figure 9).

In Figure 10, the changes in 𝑃𝑟 and 𝑁𝑟 for the
threshold 𝑇2 of Method 2 are shown by the blue and
orange lines, respectively. To see the Figure 10, as 𝑇2
increases, 𝑃𝑟 increases and 𝑁𝑟 decreases. This arises for
the same reason as explained in the case of Method 1. In
Method 2, as shown in Figure 10, to achieve 𝑃𝑟 of
approximately 0.8, a threshold of 3.0×10−2 resulted in 𝑃𝑟
of 0.84 and 𝑁𝑟 of 9.0 (as indicated by the red dashed line
in Figure 10).

In Figure 11, the changes in 𝑃𝑟 and 𝑁𝑟 for the
detection time margin (𝑛) of Method 3 are shown by the
blue and orange lines, respectively. In this case,
threshold parameter 𝑇1 in the baseline Method 1 is equal
to 0.50×10−2 . Theoretically, as 𝑛 increases, the cutoff
point shifts backward. Therefore, 𝑃𝑟 should gradually
increase from the precision (0.70) observed in the
baseline Method 1 when 𝑇1 = 0.50×10−2 . However, in
reality, to see Figure 11, we observe 𝑃𝑟 fluctuates
between approximately 0.65 and 0.8 as 𝑛 increases. This
indicates that, depending on the value of 𝑛, it is possible
to achieve 𝑃𝑟 of 0.8 or higher in Method 3.

In Method 3, as shown in Figure 11, setting the
threshold 𝑇1 to 0.50×10−2 and deciding a cutoff after a
margin (𝑛) of 5 achieves 𝑃𝑟 of 0.80 and 𝑁𝑟 of 14.6 (as
indicated by the red dashed line in Figure 11). This result
significantly exceeds the 𝑁𝑟 of 10.6 observed in Method
1 when 𝑃𝑟 was approximately 0.8 (actually 0.79) at 𝑇1
equal to 0.75×10−2.

In case of achieving a Precision of approximately
0.8, the best-performing method was Method 3 in the
three methods. This method was able to delete an

average of 14.6 characters in Japanese. In Japanese,
people speak at a pace of about 6 characters per

second. Therefore, this method would shorten the
response delay by approximately 2.4 seconds.

Additionally, lowering the target Precision criterion
below 0.8 allows for an increase in the average number
of deleted characters. For example, when allowing
Precision to drop to 0.7, the evaluation results for each
method are as follows. In Method 1, with a threshold of
0.5×10−2, Precision decreases to 0.70, while the average
number of deleted characters increases to 17.5 (as
indicated by the green dashed line in Figure 9) . In
method 2, with a threshold of 2.5×10−2, Precision is 0.73
and the average number of deleted characters increases
to 10.7 (as indicated by the green dashed line in Figure
10). Finally, for Method 3, with a threshold of 3.0×10−2
and a margin of 4 characters, Precision is 0.77, and the
average number of deleted characters improves to 15.2
(as indicated by the green dashed line in Figure 11).

In case of achieving a Precision of 0.7, the best-
performing method was also Method 3 in the three
methods. This method was able to delete an average of

15.2 characters in Japanese. In this case, the response
delay can be shortened by approximately 2.5
seconds.

Figure 9. Evaluation result of Method 1

0

5

10

15

20

25

30

0.0

0.2

0.4

0.6

0.8

1.0

0 0.5 1 1.5 2 2.5

C
h

aracters R
e

d
u

ced
N

r

P
re

ci
si

o
n

 P
r

Threshold T1（×10-2）

𝑇1=
 0 ×10−2

𝑇1=
0 ×10−2

𝑃𝑟 = 0
𝑁𝑟 = 10

𝑁𝑟 = 1
𝑃𝑟 = 0 0

 158

Figure 10. Evaluation result of Method 2

Figure 11. Evaluation result of Method 3 (𝑇1 = 0.5×10−2)

7. Conclusion
We examined a method which is generating

responses with a Large Language Model (LLM) based on
incomplete utterance to reduce response delay in voice
dialogue systems. We have concluded that changes in
text similarity may have been related to the
appropriateness of the LLM's responses. Therefore, we
proposed three methods to determine the cutoff point
based on these changes and demonstrate their
effectiveness. As a result, in Method 3 (determination
based on 𝑡𝑚𝑒𝑡ℎ𝑜𝑑3, which is proceeded by n points from
the derivative of 𝑆𝑡), we were able to reduce an average
of 14.6 characters in Japanese text while maintaining
more than 0.8 performance in LLM’s responses. This
corresponds to approximately 2.4 seconds in spoken
Japanese. Therefore, we considered to reduce response
delays by the same amount using Method 3.

Nevertheless, the corpus used in this experiment
was text-based and comprised more formal expressions.
In real-world applications, where human speech will be
used, more colloquial expressions are likely to occur.
Therefore, future work will focus on evaluating the
LLM's performance under such conditions and further
refining the proposed methods.

References
[1] Michael Mctear, Conversational AI Dialogue

Systems, Conversational Agents, and Chatbots.

Springer Nature, 2021.

[2] Kevin Zagalo, Olena Verbytska, Liliana Cucu-

Grosjean, and Avner Bar-Hen, “Response Times

Parametric Estimation of Real-Time Systems,” arXiv

preprint, arXiv:2211.01720, 2022.

[3] Carlos Arriaga, Alejandro Pozo, Javier Conde, Alvaro

Alonso, “Evaluation of real-time transcriptions using

end-to-end ASR models,” arXiv preprint,

arXiv:2409.05674, 2024.

[4] Antoine Raux, “Flexible Turn-Taking for Spoken
Dialog Systems,” Ph.D. dissertation, Computer

Science, Carnegie Mellon Univ., Pittsburgh, PA.

[5] Awni Hannun, Carl Case, Jared Casper, Bryan

Catanzaro, Greg Diamos, Erich Elsen, Ryan Prenger,

Sanjeev Satheesh, Shubho Sengupta, Adam Coates,

Andrew Y. Ng, “Deep Speech: Scaling up end-to-end

speech recognition,” arXiv preprint, arXiv:1412.5567,

2014.

[6] V. M. Reddy, T. Vaishnavi and K. P. Kumar,

"Speech-to-Text and Text-to-Speech Recognition

Using Deep Learning," 2023 2nd International

Conference on Edge Computing and Applications

(ICECAA), Namakkal, India, 2023, pp. 657-666.

[7] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida,

Carroll L. Wainwright, Pamela Mishkin, Chong

Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray,

John Schulman, Jacob Hilton, Fraser Kelton, Luke

Miller, Maddie Simens, Amanda Askell, Peter

Welinder, Paul Christiano, Jan Leike, Ryan Lowe,

“Training language models to follow instructions with

human feedback,” Advances in neural information

processing systems, vol. 35, pp. 27730-27744, 2022.

[8] Yuxuan Wang, RJ Skerry-Ryan, Daisy Stanton,

Yonghui Wu, Ron J. Weiss, Navdeep Jaitly,

Zongheng Yang, Ying Xiao, Zhifeng Chen, Samy

Bengio, Quoc Le, Yannis Agiomyrgiannakis, Rob

Clark, Rif A. Saurous, “Tacotron: Towards End-to-

End Speech Synthesis,” arXiv preprint,

arXiv:1703.10135, 2017.

0
2
4
6
8
10
12
14
16
18
20

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7 8 9 10

C
h

aracte
rs R

e
d

u
ce

d
 N

r

P
re

ci
si

o
n

 P
r

Detection time margin n

𝑛 = 𝑛 =

𝑃𝑟 = 0 0

𝑁𝑟 = 1

𝑁𝑟 = 1 2

𝑃𝑟 = 0

0

5

10

15

20

25

30

35

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8

C
h

aracte
rs R

e
d

u
ce

d
N

r

P
re

ci
si

o
n

 P
r

Threshold T2（×10-2）

𝑇2=
 3 0 ×10−2

𝑇2=
 2 ×10−2

𝑃𝑟 = 0
𝑁𝑟 = 0

𝑁𝑟 = 10
𝑃𝑟 = 0 3

 159

[9] Aaron van den Oord, Sander Dieleman, Heiga Zen,

Karen Simonyan, Oriol Vinyals, Alex Graves, Nal

Kalchbrenner, Andrew Senior, Koray Kavukcuoglu,

“WaveNet: A Generative Model for Raw Audio,”

arXiv preprint, arXiv:1609.03499, 2016.

[10] Jinchuan Tian, Chunlei Zhang, Jiatong Shi, Hao

Zhang, Jianwei Yu, Shinji Watanabe, Dong Yu,

“Preference Alignment Improves Language Model-

Based TTS,” arXiv, vol. abs/2409. 12403, 2024.

[11] Ryo Masumura, Tomohiro Tanaka, Atsushi Ando,

Ryo Ishii, Ryuichiro Higashinaka, Yushi Aono,

“Neural Dialogue Context Online End-of-Turn

Detection,” in Proceedings of the 19th Annual

SIGdial Meeting on Discourse and Dialogue,

Melbourne, Australia, 2018, pp. 224–228

[12] Shuhei Asaka, Kenji Nishida, Katsutoshi Itoyama,

and Kazuhiro Nakadai, “Towards Natural Spoken

Dialogue Systems Based on AI Services,” SICE

SI2023, Tokyo Tech Univ., Tokyo, Japan, 3B2-01,

2023, (in Japanese).

[13] Derek Jacoby, Tianyi Zhang, Aanchan Mohan,

Yvonne Coady, “Human Latency Conversational

Turns for Spoken Avatar Systems,” arXiv preprint,

arXiv:2404.16053, 2024.

[14] Tirza Biron, Daniel Baum,Dominik Freche,Nadav

Matalon,Netanel Ehrmann,Eyal Weinreb,David

Biron,Elisha Moses, “Automatic detection of

prosodic boundaries in spontaneous speech,” PLoS

One, vol. 16, no. 5, 2021.

[15] Fangjia Shen, Timothy G. Rogers, “A Hardware Ray

Tracer Datapath with Generalized Features,” arXiv

preprint, arXiv:2409.06000, 2024.

[16] Erhan Sezerer, Selma Tekir, “A Survey On Neural

Word Embeddings,” arXiv, vol. abs/2110.01804,

2021.

[17] Mourad Mars, “From Word Embeddings to Pre-

Trained Language Models: A State-of-the-Art

Walkthrough,” Applied Sciences, vol. 12, no. 17, p.

8805, 2022.

[18] Nils Reimers, Iryna Gurevych, “Sentence-BERT:

Sentence Embeddings using Siamese BERT-

Networks,” in Proceedings of the 2019 Conference on

Empirical Methods in Natural Language Processing

and the 9th International Joint Conference on Natural

Language Processing (EMNLP-IJCNLP), Hong

Kong, China, 2019, pp. 3982–3992.

[19] Ameet V. Joshi, “Machime Learning and Artificial

Intelligence 2nd Edition,” 2023, pp. 216-217.

[20] Hiroaki Sugiyama, Masahiro Mizukami, Tsunehiro

Arimoto, Hiromi Narimatsu, Yuya Chiba, Hideharu

Nakajima, and Toyomi Meguro. Empirical analysis

of training strategies of transformer-based Japanese

chit-chat systems. In Proceedings of 2022 IEEE

Spoken Language Technology Workshop, pp. 685–

691, 2023.

