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Abstract - In typical LLM-based voice dialogue systems, the 
system waits for the user to finish speaking before processing 
and generating a response, causing a delay. We propose an 
approach where the LLM generates response text for an 
incomplete utterance without waiting for the user to finish 
speaking. This method allows for earlier initiation of response 
generation, potentially reducing delays. However, LLMs may not 
always produce appropriate responses when generating replies 
to incomplete utterances, despite their predictive capabilities. If 
voice data acquisition is terminated too early, the likelihood of 
inappropriate responses from the LLM increases. On the other 
hand, delaying the termination reduces the effectiveness of 
latency reduction. Therefore, it is crucial to identify the optimal 
timing for terminating voice data acquisition.  
         To determine the optimal timing for stopping audio 
capture and initiating response generation, we use changes in 
Sentence-BERT embedding representations of the dialogue 
history up to that point. We investigate changes in the similarity 
measure, 𝑆𝑡(𝑋0, 𝑋𝑡), between the embedding representation 𝑋0 
(the embedding at the start of the user's utterance) and 𝑋𝑡  (the 
embedding at midpoint t during the user's utterance).   
        It is suggested that the changes in similarity may be 
correlated with the validity of the LLM's responses. Therefore, 
we proposed some methods to determine the cutoff point based 
on these changes and conducted simulation experiments to 
evaluate their effectiveness specifically in Japanese 
conversations. As a result, we demonstrated that our proposed 
method can successfully stop audio capture 14.6 characters 
before the end of the user's utterance, achieving a 0.80 
probability of generating a valid response. This reduction of 14.6 
characters corresponds to approximately 2.4 seconds in 
Japanese speech. 
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1. Introduction 
Voice dialogue systems [1] have been put into 

practical use and are utilized in various services. The 
systems can be classified into task-oriented dialogue 
systems, which are designed to accomplish specific tasks, 
and non-task-oriented systems, which do not aim to 
accomplish a particular task. For example, the former is 
used for purposes such as asking about tomorrow’s 
weather and purchasing something on online sites. On 
the other hand, the latter is a chit-chat system which 
engages in conversations without a specific goal. Chit-
chat systems are not only for enjoying casual 
conversations but are also expected to have 
psychological benefits, such as maintaining or improving 
mental health and reducing feelings of loneliness 
through conversation. 

In these voice dialogue systems, it is common for a 
time-lag to occur between the user's utterance and the 
system's response. In task-oriented systems, users 
unconsciously tolerate some delay in responses because 
they generally hope to obtain information from the 
system or convey information to it. However, in chit-chat 
systems, response delay becomes a problem [2]. In 
Japanese conversations between humans, it is common 
for the next speaker to start speaking within one second 
after the previous speaker finishes. Therefore, if the 
purpose of the system is casual conversations like those 
between humans, unless its response occurs in a short 
time, subjective satisfaction will deteriorate 
significantly. Thus, this study focuses on chit-chat 
systems and attempts to reduce its response time. 
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In the following section, we explain the mechanism 
by which response delay occurs in a voice dialogue 
system. Then, we introduce our approach for reducing 
the delay and explain the issues that arise in this 
approach in Section 4. In Section 5, we present our 
proposed method to solve these issues. In Section 6, we 
evaluate the performance of the proposed method using 
Japanese conversation corpora and present the optimal 
parameters of the method. 

 

2. Response Delay in Dialogue Systems 
Figure 1 illustrates a process flow of a typical voice 

dialogue system. The user's utterance is captured as an 
audio signal through a microphone [3]. In general, the 
end of a user’s utterance is detected by margin, which 
means passing a certain time from no voice signal [4]. 
After detected it, the audio signal is processed through 
speech recognition to convert it into text [5], [6]. 
Following this, based on the user's utterance text, a large 
language model ( LLM [7] )  generates the system's 
response text. Then, the system converts it into system-
generated speech [8]-[10]. 
 By the above processes (the margin for detecting 
the end of the utterance, speech recognition, generating 
system response text and converting it into system 
response voice), "response delay" occurs from the time 
the user finishes speaking to when the system begins to 
respond.  

 
 
 
 
 
 
 
 
 

Figure 1.  Response delay in a voice dialogue system 

 
 

3. Related Work 
To determine the timing for the system to start 

speaking (turn-taking), it is necessary to detect the end 
of the user's utterance [11]. A common approach is to 
wait for a certain margin of time after the user’s 
utterance input has ceased. If this margin is too short, the 
system may mistakenly determine that the user has 
finished speaking due to short silent intervals caused by 
breathing or getting stuck for words. Generally, a margin 
of several hundred milliseconds to a few seconds is used 

(the exact value needs to be confirmed). However, this 
margin becomes significant for achieving system 
responses within one second, because in Japanese daily 
conversations, the next speaker usually starts speaking 
within one second after the previous speaker finishes 
[12], [13]. 

There is a method that can be used that predicts 

the end of speech based on changes in the prosody of the 

user's utterance to determine the end of speech without 

waiting for a margin. In this approach, features of 

changes in fundamental frequency and sound pressure 

at the end of speech are utilized to estimate the end of 

speech based on real-time measurements of the user's 

voice’s fundamental frequency and sound pressure [14]. 

 

4. Approach and Issues 
Regarding the response delay described above, 

this paper proposes a method where, instead of waiting 
for the user's utterance to be completed (by stopping 
audio capture on the way ) , speech recognition is 
performed on the incomplete utterance audio data, and 
a response is generated using a large language model 
based on the incomplete utterance text. This approach 
allows the speech recognition process to start earlier 
because this system does not wait for the user's 
utterance to be completed, which in turn enables the 
system to generate a response more quickly. (Of course, 
when the system generates a response, it will confirm 
that the user's utterance has finished at that time before 
proceeding with the response.) Figure 2 illustrates this 
proposed approach. 

 
 
 
 
 
 
 
 

 
 

Figure 2.  Proposed approach for reducing response delay 
 
However, the proposed approach has a significant 

issue. Specifically, since responses are generated based 
on incomplete utterance text, there is a possibility that 
inappropriate responses may be created. When using 
large language models like ChatGPT for response 
generation, these models are designed to predict after 
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next word in a sequence based on partially completed 
sentences. While they have the capability to predict the 
missing parts ( such as the end of an incomplete 
utterance )  and generate coherent responses, if the 
termination which audio capture is stopped is too early, 
the likelihood of generating meaningful responses 
decreases.  

On the other hand, delaying the termination 
reduces the effectiveness of latency reduction. Therefore, 
it is crucial to identify the optimal timing for terminating 
voice data acquisition. Therefore, it is crucial to identify 
the optimal timing for terminating voice data acquisition. 

 
5. Proposed Method 

In this section, we explain the proposed method to 
determine the cutoff point based on changes in similarity 
[15] calculated using embedding representations. 

 
5. 1. Embedding of Dialogue History 

Embedding is a method of converting text, images, 
or other types of data into numerical vectors, enabling 
computers to efficiently process and analyze them [16], 
[17]. In the context of text data, embedding converts 
words or sentences into low-dimensional dense vectors 
that capture various semantic features. Unlike simple 
vectorization, embeddings provide more advanced 
representations by considering the semantic 
relationships between words [1]. In this context, we use 
Sentence-BERT [18], a representative method for 
generating sentence embeddings, to create the 
embedding representation, denoted as X, of the 
conversation-history text up to a certain point. 

To observe changes in the embedding 
representation, we track the similarity between a 
reference embedding and the most recent embedding at 
the point of interest. Figure 3 shows the concept of the 
similarity of the two embeddings. We set the initial point 
𝑡0 , which is the beginning of the target turn (user's 
utterance), as the reference point. Moreover, we define 
the embedding representation of the entire conversation 
history up to the reference point as 𝑋0 . As the user's 
utterance progresses, we define the embedding 
representation of the entire conversation history up to 
the most recent point, 𝑡 , as 𝑋𝑡. As a metric to represent 
the change in 𝑋𝑡, we use the cosine similarity 𝑆𝑡(𝑋0, 𝑋𝑡) 
between 𝑋0 and 𝑋𝑡. It can be written as: 

 

𝑆𝑡(𝑋0, 𝑋𝑡) =
𝑋0 ⋅ 𝑋𝑡
‖𝑋0‖‖𝑋𝑡‖

 (1) 

 
Here, 𝑋0 ⋅ 𝑋𝑡 represents the dot product of 𝑋0 and 𝑋𝑡 , 
while ‖𝑋0‖ and ‖𝑋𝑡‖ represent the magnitudes of each 
vector. 𝑆𝑡(𝑋0, 𝑋𝑡) takes a value between 0.0 and 1.0, and 
the closer the value is to 1.0, the more similar 𝑋0 and 𝑋𝑡 
are. 

 
5. 2. Changes in Embedding 

Figures 4 through 6 illustrate the changes in 𝑆𝑡 for 
three example conversation sessions, along with the 
evaluation of the validity of the LLM's responses at each 
cutoff point in each session. In these graphs, the vertical 
axis represents similarity, the top horizontal axis shows 
the number of characters that could be deleted, the 
middle axis shows the deleted one character (user's 
utterances in Japanese), and the bottom axis represents 
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the human subjective evaluation of the validity of the 
LLM's responses. The subjective evaluation uses circles 
(◯) for Good, triangles (△) for Subpar, and crosses (×) 
for Bad. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.  Changes of 𝑆𝑡  in conversation session example 1 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.  Changes of 𝑆𝑡  in conversation session example 2 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.  Changes of 𝑆𝑡  in conversation session example 3 

 
The relationship between changes in 𝑆𝑡 and the 

variations in the validity of the LLM's responses at each 

cutoff point differs across conversation sessions. However, 

as illustrated in the example conversation in Figure 4, cutting 

off the dialogue too early typically results in low validity of 

the LLM's responses (×), while a later cutoff point tends to 

improve the validity (◯). Additionally, as shown in Figures 

5 and 6, a common case is that cutting off the dialogue near 

the point where the similarity drops significantly often 

results in high validity of the LLM's responses (◯) ." 

Therefore, these graphs suggest that changes in 𝑆𝑡 could 
be used as a metric for determining cutoff points. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.  Concepts of Method 1 and Method 2 
 
5. 3. Cutoff Point Determination Method 

Three methods (Method 1, Method 2, and Method 
3) are proposed to determine the cutoff point based on 
changes in embedding representation similarity. Figure 
7 illustrates the concepts of Method 1 and Method 2. 

 
5. 3. 1. Method 1： Determination based on the 

derivative of 𝑺𝒕 
In Method 1, the cutoff point is determined where 

the change in 𝑆𝑡 (the derivative of 𝑆𝑡) is large over. The 
similarity 𝑆𝑡  is calculated by the conversation history 
obtained from the reference point 𝑡0 to a later point 𝑡 . 
Compare the values of 𝑆𝑡−1 − 𝑆𝑡 and 𝑇1, and if 𝑆𝑡−1 − 𝑆𝑡 
is greater than or equal to 𝑇1 , it is determined as the 
cutoff point (Equation 2). 

 
𝑆𝑡−1 − 𝑆𝑡  ≥ 𝑇1  (𝑡 = 1, 2, 3⋯ ) (2) 

 
Repeat the same evaluation as the user's 

utterances progress. Further, it continues to capture the 
conversation until a cutoff point is detected. Once the 
cutoff point is detected, the conversation capture stops, 
and the captured audio data up to that point is converted 
to text via speech recognition. The text is then input into 
the LLM to generate a response. 

If the cutoff point is not detected before the user's 
utterance ends, it means that no characters can be 
omitted. In this case, the time shortened by the cutoff 
method would be zero. 

Proposed Method 1 
Derivative value ≧ 𝑇1 

Proposed Method 2 
Difference value ≧ 𝑇2 
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5. 3. 2. Method 2：Determination based on the decay 
of 𝑺𝒕 

In Method 2, the cutoff point is determined based 
on the total amount of decay in 𝑆t. Specifically, compare 
the values of 𝑆0 − 𝑆𝑡 and 𝑇1, and if 𝑆0 − 𝑆𝑡 is greater than 
or equal to 𝑇2 , it is determined as the cutoff point 
(Equation 3). 

 
𝑆0 − 𝑆𝑡  ≥ 𝑇2  (𝑡 = 1, 2, 3⋯ ) (3) 

 
The process of repetition and the procedure after 

detecting the cutoff point are the same as in Method 1. 
 

5. 3. 3. Method 3：Determination with 𝒏  margin 

characters 
Figure 8 illustrates the concept of Method 3. 

Similarly to Method 1, the cutoff point is detected based 
on the derivative of 𝑆𝑡. After detecting the cutoff point in 
Method 1, the cutoff point for Method 3 is detected after 
𝑛margin characters. In other words, the cutoff point 
𝑡𝑚𝑒𝑡ℎ𝑜𝑑3 for Method 3 is detected using the following 
equation: 

 
𝑡𝑚𝑒𝑡ℎ𝑜𝑑3 = 𝑡𝑚𝑒𝑡ℎ𝑜𝑑1 + 𝑛 (4) 

 
Here, 𝑡𝑚𝑒𝑡ℎ𝑜𝑑1 is the cutoff point detected by Method 1. 
The process of repetition and the procedure after 
detecting the cutoff point are the same as in Method 1. 

 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 8.  Concept of Method 3 

 
6. Evaluation experiment 

In this section, the effectiveness of each proposed 
method was evaluated. In particular, the evaluation 

methods, evaluation data, and evaluation results are 
described below. 

 
6. 1. Evaluation method and Evaluation data 

For each method, the following two metrics are 
evaluated. The first metric is Precision (𝑃𝑟). Generally, 
Precision refers to the proportion of positive predictions 
that are actually correct [19]. In this study, Precision is 
defined as the proportion of LLM’s responses deemed 
valid (◯) when a cutoff was applied by each method. 
Since a cutoff is always executed somewhere in each 
method (if cutoff point is not detected, it is interpreted 
as a cutoff at the end of the sentence), the number of 
“positive predictions" in the above definition 
corresponds to the total number of conversation 
sessions used in the experiment. Therefore, Precision 
(𝑃𝑟) is calculated using the following formula: 

 

𝑃𝑟 = 
𝑁𝑔𝑜𝑜𝑑

𝑁𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝑠
 (5) 

 
Here, 𝑁𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝑠 denotes the total number of sessions, and 
𝑁𝑔𝑜𝑜𝑑  denotes the number of sessions in which the LLM's 

response was subjectively evaluated as Good (◯) after 
applying the cutoff. 

The second metric is the average number of 
deleted characters (𝑁𝑟) . It indicates how many 
characters from the user's utterance were omitted by 
applying each cutoff method, compared to capturing the 
entire utterance. Therefore, a higher 𝑁𝑟  value is 
associated with a greater potential to shorten response 
delays. 

The corpus used in this study was collected from 
dialogues in Japanese between two parties, with A 
representing the user and B representing the dialogue 
system. We focused on the 5th utterance of A (which is 
the user’s turn) from the start of the dialogue, applying 
each cutoff method. To establish a basic approach, we 
used a text-based corpus [20], which is considered to 
have less ambiguity compared to colloquial dialogue 
corpus. From the top 100 data samples in the target 
corpus, we extracted 56 dialogue sessions where the 
number of characters in the focused turn was between 
30 and 45 characters or between 60 and 100 characters. 
  
6. 2. Evaluation results and Discussion 

In Figure 9, the changes in Precision (𝑃𝑟) for the 
threshold 𝑇1  of Method 1 and the average number of 
deleted characters (𝑁𝑟)  are shown by the blue and 
orange lines, respectively. To see the Figure 9, as 𝑇1 

Proposed Method 3 
𝑡𝑚𝑒𝑡ℎ𝑜𝑑3 = 𝑡𝑚𝑒𝑡ℎ𝑜𝑑1 + 𝑛 
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increases, 𝑃𝑟  also increases. This can be interpreted as 
follows: as 𝑇1 increases, the cutoff point is not detected 
until a larger differential value occurs. As a result, the 
cutoff point will be shifting later. Consequently, the text 
input to the LLM becomes longer. This increases 𝑃𝑟 , 
which represents the proportion of correct answers 
provided by the LLM. Additionally, Figure 9 shows that 
as 𝑇1  increases, 𝑁𝑟  decreases. This is because as 𝑇1 
increases, the cutoff point shifts later, leaving fewer 
characters at the end of the text that can be deleted. As 
explained above, there is a trade-off between 𝑃𝑟 and 𝑁𝑟 .  

In Method 1, as shown in Figure 9, to achieve 𝑃𝑟 of 
approximately 0.8, a threshold of 0.75×10−2 resulted in 
𝑃𝑟 of 0.79 and 𝑁𝑟  of 10.6 (as indicated by the red dashed 
line in Figure 9). 

In Figure 10, the changes in 𝑃𝑟  and 𝑁𝑟  for the 
threshold 𝑇2  of Method 2 are shown by the blue and 
orange lines, respectively. To see the Figure 10, as 𝑇2 
increases, 𝑃𝑟 increases and 𝑁𝑟  decreases. This arises for 
the same reason as explained in the case of Method 1. In 
Method 2, as shown in Figure 10, to achieve 𝑃𝑟  of 
approximately 0.8, a threshold of 3.0×10−2 resulted in 𝑃𝑟 
of 0.84 and 𝑁𝑟  of 9.0 (as indicated by the red dashed line 
in Figure 10). 

In Figure 11, the changes in 𝑃𝑟  and 𝑁𝑟  for the 
detection time margin (𝑛) of Method 3 are shown by the 
blue and orange lines, respectively. In this case, 
threshold parameter 𝑇1 in the baseline Method 1 is equal 
to 0.50×10−2 . Theoretically, as 𝑛  increases, the cutoff 
point shifts backward. Therefore, 𝑃𝑟  should gradually 
increase from the precision ( 0.70 )  observed in the 
baseline Method 1 when 𝑇1 =  0.50×10−2 . However, in 
reality, to see Figure 11, we observe 𝑃𝑟  fluctuates 
between approximately 0.65 and 0.8 as 𝑛 increases. This 
indicates that, depending on the value of 𝑛, it is possible 
to achieve 𝑃𝑟 of 0.8 or higher in Method 3. 

In Method 3, as shown in Figure 11, setting the 
threshold 𝑇1 to 0.50×10−2 and deciding a cutoff after a 
margin (𝑛)  of 5 achieves 𝑃𝑟  of 0.80 and 𝑁𝑟  of 14.6 (as 
indicated by the red dashed line in Figure 11). This result 
significantly exceeds the 𝑁𝑟  of 10.6 observed in Method 
1 when 𝑃𝑟  was approximately 0.8 (actually 0.79) at  𝑇1 
equal to 0.75×10−2. 

In case of achieving a Precision of approximately 
0.8, the best-performing method was Method 3 in the 
three methods. This method was able to delete an 

average of 14.6 characters in Japanese. In Japanese, 
people speak at a pace of about 6 characters per 

second. Therefore, this method would shorten the 
response delay by approximately 2.4 seconds. 

Additionally, lowering the target Precision criterion 
below 0.8 allows for an increase in the average number 
of deleted characters. For example, when allowing 
Precision to drop to 0.7, the evaluation results for each 
method are as follows. In Method 1, with a threshold of 
0.5×10−2, Precision decreases to 0.70, while the average 
number of deleted characters increases to 17.5 ( as 
indicated by the green dashed line in Figure 9 ) . In 
method 2, with a threshold of 2.5×10−2, Precision is 0.73 
and the average number of deleted characters increases 
to 10.7 (as indicated by the green dashed line in Figure 
10). Finally, for Method 3, with a threshold of 3.0×10−2 
and a margin of 4 characters, Precision is 0.77, and the 
average number of deleted characters improves to 15.2 
(as indicated by the green dashed line in Figure 11). 

In case of achieving a Precision of 0.7, the best-
performing method was also Method 3 in the three 
methods. This method was able to delete an average of 

15.2 characters in Japanese. In this case, the response 
delay can be shortened by approximately 2.5 
seconds. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.  Evaluation result of Method 1 
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Figure 10.  Evaluation result of Method 2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11.  Evaluation result of Method 3 (𝑇1 = 0.5×10−2) 
 

7. Conclusion 
We examined a method which is generating 

responses with a Large Language Model (LLM) based on 
incomplete utterance to reduce response delay in voice 
dialogue systems. We have concluded that changes in 
text similarity may have been related to the 
appropriateness of the LLM's responses. Therefore, we 
proposed three methods to determine the cutoff point 
based on these changes and demonstrate their 
effectiveness. As a result, in Method 3 (determination 
based on 𝑡𝑚𝑒𝑡ℎ𝑜𝑑3, which is proceeded by n points from 
the derivative of 𝑆𝑡), we were able to reduce an average 
of 14.6 characters in Japanese text while maintaining 
more than 0.8 performance in LLM’s responses. This 
corresponds to approximately 2.4 seconds in spoken 
Japanese. Therefore, we considered to reduce response 
delays by the same amount using Method 3.  

Nevertheless, the corpus used in this experiment 
was text-based and comprised more formal expressions. 
In real-world applications, where human speech will be 
used, more colloquial expressions are likely to occur. 
Therefore, future work will focus on evaluating the 
LLM's performance under such conditions and further 
refining the proposed methods. 
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