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Abstract - This paper proposes a novel approach for fault 
detection in an electro-hydrostatic actuation (EHA) system, 
focusing on detecting system leakage. Bayesian optimization is 
integrated within a neural network framework for tuning the 
hyperparameters. This new approach enhances the network's 
capability to classify faults with higher accuracy. To detect 
faults effectively, we utilize a polyscale complexity measure 
known as variance fractal dimension (VFD), which extracts 
critical features from the signal data. These features are fed into 
the Bayesian-optimized neural network, forming an effective 
fault detection model. We compare the performance of our 
Bayesian-optimized neural network against traditional 
classification methods, including support vector machines, 
decision trees, and random forests. The results demonstrate that 
our approach not only improves fault detection accuracy but 
also outperforms these conventional methods. This establishes 
its potential as a reliable technique for fault detection in 
hydraulically actuated systems. 
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1. Introduction 

Hydraulic systems are crucial in many industries 
because they can manage heavy loads and provide 

precise control in robotics and manufacturing [1,2]. 
Electro-hydrostatic actuation (EHA) systems play a vital 
role in combining the benefits of hydraulic power with 
the efficiency of electric actuation. As EHA systems 
become increasingly essential to the functionality and 
performance of hydraulic systems, the need for effective 
fault detection techniques for EHA systems becomes 
paramount. Ensuring the reliability and operational 
continuity of EHA systems through advanced fault 
detection is, therefore, crucial to preventing costly 
downtime and maintaining system efficiency.  One 
significant problem in EHA systems is internal actuator 
leakage through high-pressure seals between cylinder 
chambers. Detecting this leakage is difficult without 
disassembling the system. Therefore, monitoring the 
system's performance using available signals and signal 
processing methods is beneficial for the timely detection 
of leakage faults [3]. Previous research has explored 
various methods for fault detection in hydraulic systems. 
A convolutional neural network was applied to diagnose 
faults in hydraulic pumps [4]. In [5], a multiscale analysis 
of experimental data was employed for internal leakage 
detection in an EHA system. A comprehensive review of 
different fault detection techniques employing signal 
processing algorithms was detailed in [6].  

Signal processing algorithms are important in fault 
detection because they help extract important features 
from raw data representing the signals. These features 
are then used as inputs for different machine learning 
classifiers like artificial neural networks, support vector 
machines, random forests, and decision trees to identify 



 145 

faults effectively [7]. The common feature extraction 
methods for time series data include monoscale and 
multiscale methods. Polyscale complexity measures, 
such as the length and variance fractal dimension (VFD), 
are useful in analysing self-affine signals with long-range 
dependence, a concept developed by Kinsner in 1994 [8]. 
Polyscale analysis offers a more effective approach by 
simultaneously considering data from multiple scales, 
making it particularly suitable for self-affine signals. 
These measures have found wide applications across 
various fields like machine learning, image processing, 
natural language processing, and computer vision. 

 Artificial neural networks (ANNs) have become an 
integral part of modern engineering and are essential for 
monitoring and controlling hydraulic systems effectively 
[9]. One of the key challenges in ANNs is the precise 
tuning of their hyperparameters. Hyperparameters like 
learning rate, the number of layers, batch size, and 
activation functions significantly influence the 
performance of machine learning models. The process of 
selecting the optimal hyperparameters is non-trivial. 
The common approaches often involve a combination of 
expert knowledge and heuristic search techniques like 
grid search or random search. Bayesian optimization is a 
useful strategy for optimizing hyperparameters in 
neural networks. It can be beneficial when dealing with 
high-dimensional spaces or when evaluations of the 
objective function, like training ANNs, are 
computationally expensive [10]. This method uses a 
probabilistic model to predict the performance of the 
classifiers under different configurations and iteratively 
updates the model based on actual performance 
outcomes. 

  Motivated by the above discussion, this paper 
suggests a novel method for fault classification in EHA 
systems using a Bayesian-optimized ANN. In doing this, 
a feature extraction method is developed based on VFD 
to be employed in the structure of neural networks. 
Features are extracted from the pressures in both the 
cap and rod sides of the chambers. Thus, recognizing the 
critical role of hyperparameters in the performance of 
ANNs, we employ Bayesian optimization for tuning 
hyperparameters. This approach efficiently enhances 
the ANN’s ability to classify faults in EHA systems. 

 
2. Overview of the Electro-hydrostatic Actuator 

This study is built upon the novel energy-efficient 
EHA system designed by Costa and Sepehri [11]. Figure 
1 illustrates the schematic of the hydraulic circuit. This 
system utilizes a bidirectional pump controlled by a 

servomotor to drive an asymmetric cylinder connected 
to a backhoe arm. The position of the cylinder rod is 
monitored using an incremental encoder, and the 
backhoe arm is subjected to varying loads, as shown in 
Fig. 1. The control input for this system is the voltage 
supplied to the servo motor governing the bidirectional 
pump. This pump directs flow to either side of the 
actuator based on the servomotor's operation, leading to 
pressure buildup. The pressure differential across the 
cylinder determines the exerted force. Pressure signals 
are crucial not only for controlling cylinder motion but 
also for condition monitoring, as is the focus of this 
paper. Therefore, denoising these pressure signals is also 
important for effective system control and health 
monitoring.  

        The data acquisition system for this EHA setup 
is built around a Raspberry Pi model 4 [12]. The test rig 
incorporates a mechanism to emulate internal leakage 
within the actuator chambers. This is achieved by 
regulating an orifice connecting both sides of the 
cylinder. Initially, the orifice is entirely closed, 
simulating a healthy (non-leaking) actuator. 
Subsequently, the orifice is opened progressively to 
represent varying degrees of leakage.  

 

 
Fig. 1: Experimental setup. 

 
A dataset containing 48 signals was employed in 

this paper. These signals originated from the 
experimental EHA system and are categorized into two 
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classes: healthy and faulty. The faulty signals exhibited 
various degrees of internal leakage within the actuator. 
These leakage levels are classified into three distinct 
categories: small (S), medium (M), and high (H). The 
objective of this study is to develop a method for 
discriminating between healthy and faulty actuator 
signals. Therefore, the three leakage levels within the 
faulty category were collectively considered as a single 
'faulty' class for the classification task. The actuator was 
tested under three load conditions: no load (N), medium 
load (M), and high load (H). The experiments used both 
open-loop and closed-loop controls, using step and 
joystick inputs. For easy reference, each dataset has a 
unique five-letter code. The first letter (O or C) indicates 
open-loop or closed-loop control. The second letter (N, 
M, or H) represents the load level. The third letter (N, S, 
M, or H) shows the leakage level. Finally, the last two 
letters (Jo or St) signify joystick or step input (see Table 
1). The dataset ONNSt is specifically plotted. This dataset 
represents the open-loop system with no load and no-
leakage subjected to a step input for 50 seconds. Figures 
2 and 3 illustrate the input, position, velocity, leakage, 
and pressure signals for the ONNSt and ONHSt datasets.  
 

Table 1: Summary of abbreviation used for the datasets. 

Operating 
condition 

Description Abbreviation 

System 
mode 

Closed-loop velocity 
control 

C 

Open-loop velocity 
control 

O 

Input 
mode 

Joystick input Jo 

Step input St 
 

Load 
mode 

No load N 
Medium load M 

High load H 
 

Leakage 
level 

No leakage N 
Small leakage S 

Medium leakage M 
High leakage H 

 

 
 Fig. 2: Typical test results for dataset ONNSt. (a) Input 

signal 𝑢; (b) Position 𝑥𝑝; (c) Velocity, �̇�𝑝; (d) Leakage level; 

(e) Measured pressure, 𝑃𝐴; (f) Measured pressure, 𝑃𝐵 . 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3: Typical test results for dataset ONHSt. (a) Input 

signal 𝑢; (b) Position 𝑥𝑝; (c) Velocity, �̇�𝑝; (d) Leakage level; 

(e) Measured pressure, 𝑃𝐴; (f) Measured pressure, 𝑃𝐵 . 

 
To apply our feature extraction method, it is 

necessary to first denoise the pressure signals. For this, 
we used the commonly used first-order low-pass filter 
(LPF) here [31] 

 

                                   LPF(s) =
1

(
1

2𝜋𝑓𝑐
𝑠+1)

                                 (1)                                                             
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Using the LPF method, we denoised the pressure 
signals 𝑃𝐴 and 𝑃𝐵. Figures 4 and 5 show the denoised 
pressure signals 𝑃𝐴 and 𝑃𝐵 for the datasets ONNSt and 
ONHSt.  

 

 
Fig. 4: Denoised pressure signal P_A and P_B for dataset 

ONNSt. 
 

 
Fig. 5: Denoised pressure signal 𝑃𝐴 and 𝑃𝐵  for dataset 

ONHSt. 
 

3. Fractal Complexity Measure 
Relevant features from the collected data are 

extracted and employed in an ANN for fault detection. 
The variance fractal dimension (VFD) method is utilized 
to extract features suitable for fault detection in the 
actuator signals. The VFD method is a well-established 
tool for analyzing complex time series, particularly those 
exhibiting self-affine properties [8]. Notably, self-affine 
time series display a characteristic power-law 
relationship between their variance and time increments 
as follows [8] 

 
              𝑉𝑎𝑟[𝑦(𝑡𝑟) − 𝑦(𝑡𝑠)] ∼ |𝑡𝑟 − 𝑡𝑠|2𝐻               (2)                                                                                                 

 
where 𝑦(∙) is a discrete sample of a time series sampled 
at time 𝑡. Taking the logarithm of both sides of equations 
and simplifying, the Hurst exponent (H) can be derived 
as follows 

 

                           𝐻 =
1

2
lim

△𝑡→0

log[𝑉𝑎𝑟[△𝑦]]

log[△𝑡]
                          (3)                                                                       

 
       The Hurst exponent allows for the evaluation of the 
VFD through the following expression 
 

                         𝐷𝜎 = 𝐸 + 1 − 𝐻                                       (4)                  
                                                                                                              

for a time series with a single independent variable, 𝐻 ∈
[0, 1], 𝐸 = 1, and 𝐷𝜎 ∈ [1,2]. 

Unlike traditional monoscale analysis, polyscale 
analysis examines the signal across various scales 
simultaneously, utilizing volume elements (referred to 
as "vels"). To initiate the analysis, we first define the vels. 
We employ a mixed-size selection strategy as follows 

 

                   𝑛𝑘 = ⌊2
𝑘+5

4 ⌋,   𝑘 = 1,2, ⋯ ,35               (5)                                                                                              
 
where ⌊•⌋, is the floor function. The above 35 vel sizes is 
considered to obtain the VFD. We compute the variance 
of each subsequence, 𝑉𝑘,𝑚, for the corresponding vel size 

𝑛𝑘 in Eq. (5) as 
 

𝑉𝑘,𝑚 =
1

𝐽𝑘−1
[∑𝐽𝑘

𝑗=1 (𝑦[𝑚 + 𝑗𝑛𝑘] − 𝑦[𝑚 + (𝑗 −

1)𝑛𝑘])2 −
1

𝐽𝑘
(𝑦[𝑚 + 𝑗𝑛𝑘] − 𝑦[𝑚 + (𝑗 − 1)𝑛𝑘])2]         (6)                                            

 
where 𝑚 = 1,2, ⋯ , 𝑛𝑘 ∈ ℕ and 𝐽𝑘 is the number of vels of 
size 𝑛𝑘 in the subsequences of differences and is defined 
as  
 

                                         𝐽𝑘 = ⌊
𝑁𝐸−𝑛𝑘

𝑛𝑘
⌋                                      (7)   

                                                                                                    
where 𝑁𝐸  represents the number of samples in the entire 
extracted signals. If we take the average of the 
subsequences as 

 

                                𝑉𝑘,𝑎𝑣𝑒 =
1

𝑛𝑘
𝑉𝑘,𝑚                                 (8)      

 
for each scale 𝑛𝑘, we have the pairs 
(log2(𝑛𝑘), log2(𝑉𝑘,𝑎𝑣𝑒)). To obtain the VFD, we use a 
robust linear regression technique called iteratively 
reweighted least squares (IRLS) [13]  for line fitting  

 

                    𝐷𝜎 = 2 − 𝐻 = 2 −
1

2
𝑠△                               (9)   

                                                                                       
where 𝑠△ denotes the slope of the line. Accurate 
calculation of the VFD necessitates careful data pre-
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processing. This includes removing outliers and 
saturation points from the log-log plot values. 
Techniques like IRLS can be employed to mitigate the 
influence of outliers and improve the robustness of the 
VFD calculation. 

Figures 6 and 7 show the log-log plot of 𝑉𝑘,𝑎𝑣𝑒 versus 
𝑛𝑘 for datasets ONNSt and ONHSt, along with the 
corresponding fitted lines  for pressures 𝑃𝐴 and 𝑃𝐵. As 
can be seen, the data points form a linear relationship. It 
allows us to calculate the slope of the fitted lines. If they 
did not exhibit this linear behavior, the proposed feature 
extraction method would not be suitable for use in our 
classification method. 

 

 
Fig. 6: Log-log plot of 𝑉𝑘,𝑎𝑣𝑒 versus 𝑛𝑘 for pressure signal, 𝑃𝐴 and 𝑃𝐵  

(dataset ONNSt) - The values of 𝑅2 (coefficients of determination) for the 
fitted lines are 0.9983 for  𝑃𝐴 and 0.9989 for  𝑃𝐵, respectively. 

 

 
Fig. 7: Log-log plot of 𝑉𝑘,𝑎𝑣𝑒 versus 𝑛𝑘 for pressure signal, 𝑃𝐴 and 𝑃𝐵  

(dataset ONHSt) - The values of 𝑅2 (coefficients of determination) for the 
fitted lines are 0.9990 for  𝑃𝐴 and 0.9992 for  𝑃𝐵, respectively. 

 
4. Neural Network Architecture 
        The proposed ANN for the fault classification of the 
EHA accepts two inputs as features extracted from the 
EHA, which are pre-processed and normalized for 

optimal neural network performance. The output layer 
provides a probability over 2 classes, indicating the 
probability of each class being the correct classification 
of the input. Training is conducted over 50 epochs with a 
validation split of 20% used to monitor and prevent 
overtraining on the training dataset. Datasets can be 
summarized as  

     𝐷 = {(𝑥1
(𝑖)

, 𝑥2
(𝑖)

, 𝑦(𝑖))|𝑥1
(𝑖)

, 𝑥2
(𝑖)

∈ ℝ, 𝑦(𝑖) ∈ {0,1}}       (10)                                                            

 
 where 𝑦(𝑖) represents the label for sample 𝑖, where 𝑖 =

1,2, … , 𝑀, and 𝑀 is the number of samples. 𝑥1
(𝑖)

 and 𝑥2
(𝑖)

 
are the two extracted features from pressure signals 𝑃𝐴 
and 𝑃𝐵, respectively. The dataset is labelled based on the 
third letter of each file’s name, mapping to one of the two 
classes: healthy and faulty signals. We only use the no-
leakage and small leakage datasets for our training and 
test the neural network on the rest of the datasets. 
         A stochastic gradient descent (SGD) optimization 
method is applied for optimizing the loss function in the 
ANN [14]. Instead of computing the gradient of the loss 
function over the whole dataset, SGD estimates the 
gradient based on a subset of the data, known as a 
minibatch. This makes SGD much faster for large 
datasets. Smaller batch sizes result in noisier gradients 
because they are based on less data. Therefore, the 
choice of appropriate batch size affects computational 
efficiency. Larger batch sizes can lead to faster 
convergence in terms of epochs because the gradient 
estimates are less noisy and more representative of the 
entire data set. However, it might require more 
computational resources per epoch. The binary cross-
entropy is also used as the loss function, which can be 
defined as  
 

L(𝑦, 𝑝) = −(𝑦 ∙ log(𝑝) + (1 − 𝑦) ∙ log (1 − 𝑝))         (11)                                                    
  
where 𝑦 represents the true label of the signal, indicating 
its health status. Here, 0 signifies a healthy signal, while 
1 denotes a faulty one. 𝑝  is the predicted probability of 
the class with label 1, as output by the model, and log is 
the natural logarithm.  
 
4.1. Structure of the Layers 
        Figure 8 shows the structure of the neural network. 
Each neuron in the first layer computes a weighted sum 
of the inputs plus a bias and then applies an activation 
function. For neuron 𝑖 in the first hidden layer, the output 

ℎ𝑖
(1)

 is  

 



 149 

                ℎ𝑖
(1)

= 𝑓 (∑2
𝑗=1 𝑊𝑖𝑗

(1)
𝑥𝑗 + 𝑏𝑖

(1)
)               (12)                                                        

where 𝑊𝑖𝑗
(1)

 is the weight from input 𝑗 to neuron 𝑖 in layer 

1, 𝑥𝑗 is the 𝑗th input feature, 𝑏𝑖
(1)

 is the bias for neuron 𝑖 

in layer 1, and 𝑓 is the activation function. Similar to layer 
1, each neuron in the second layer computes a weighted 
sum of the outputs from the previous layer, adds a bias, 
and then applies the activation function. For neuron 𝑘 in 

this layer, the output ℎ𝑘
(2)

 is  

 

             ℎ𝑘
(2)

= 𝑔 (∑128
𝑖=1 𝑊𝑘𝑖

(2)
ℎ𝑖

(1)
+ 𝑏𝑘

(2)
)                         (13) 

 

where 𝑊𝑘𝑖
(2)

 is the weight from neuron 𝑖 in layer 1 to 

neuron 𝑘 in layer 2, ℎ𝑖
(1)

 is the output of neuron 𝑖 in layer 

1, 𝑏𝑘
(2)

 is the bias for neuron 𝑘 in layer 2, and 𝑔 is the 

activation function. For the neuron in the output layer, 

the output ℎ𝑚
(3)

 is  
 

     ℎ(3) = 𝑠 (∑64
𝑘=1 𝑊𝑘

(3)
ℎ𝑘

(2)
+ 𝑏(3))                  (14) 

                                                                          

where 𝑊𝑚𝑘
(3)

 is the weight from neuron 𝑘 in layer 2 to the 

single neuron in the last layer, ℎ𝑘
(2)

 is the output of 

neuron 𝑘 in layer 2, 𝑏(3) is the bias for the single neuron 
in layer 3, and 𝑠 is sigmoid function.  
 

 
Fig.  8: Schematic representation of the proposed 

neural network. 

 
 
 

4.2. Bayesian Optimization  
        Bayesian optimization is an important method for 
tuning hyperparameters in machine learning models 
[15]. In the context of the neural network, Bayesian 
optimization operates by constructing a probabilistic 
model, typically a Gaussian process (GP), to estimate the 
function and then iteratively selects the next set of 
hyperparameters based on an acquisition function that 
balances exploration (sampling where the model is 
uncertain) and exploitation (sampling where the model 
predicts high performance). The Bayesian optimization 
algorithm is as follow: 
 

1. Input:   
• Initial dataset {(𝑥𝑖, 𝑦𝑖 = 𝑓(𝑥𝑖))}𝑖=1:𝑡  
• Acquisition function 𝑢(𝑥)  
• GP model for 𝑓(𝑥)  

2.  For 𝑡 = 1: 𝑇 do:    
2.1.  Model update: 
• Update the GP model using all available data 

{(𝑥𝑖, 𝑦𝑖 = 𝑓(𝑥𝑖))}𝑖=1:𝑡.  
• The GP posterior provides the mean 𝜇𝐺𝑃(𝑥) and 

variance 𝜎𝐺𝑃(𝑥)2 for any 𝑥, representing the 
predicted function values and uncertainty, 
respectively.  

2.2.  Optimize Acquisition Function:   
• Use the GP posterior to define the acquisition 

function 𝑢(𝑥).  
• Solve the next point to evaluate by maximizing 

the acquisition function:  
 

                  𝑥𝑡+1 = arg max
𝑥

 𝑢(𝑥)                                (15)                                                                  

 
2.3.  Evaluate Objective:   
• Query the true objective function 𝑓 at 𝑥𝑡+1 to 

obtain the new observation 𝑦𝑡+1 = 𝑓(𝑥𝑡+1).  
2.4.  Update Dataset:   
• Append the new data point (𝑥𝑡+1, 𝑦𝑡+1) to the 

dataset.  
3. Repeat the above steps until the max iteration is 

reached and return the point:  
 

                  𝑥∗ = argmax 
𝑥𝑖

 𝑓(𝑥𝑖)                                       (16)                                                                 

 
            Bayesian optimization was used here to define a 
hyperparameter search space that considers three key 
parameters: learning rate, batch size, and activation 
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functions in hidden layers. The learning rate, a critical 
factor in the convergence and performance of the 
training process, was varied within a range from 0.01 to 
0.1. The batch size, dictating the number of samples 
processed before the model is updated, was considered 
within an integer range from 2 to 18. Finally, the type of 
activation function used in the hidden layers was also 
optimized, with options including; rectified linear unit 
(ReLU), hyperbolic tangent, and sigmoid activation 
functions. We employed gp_minimize from the skopt 
library in Python for Bayesian optimization. A maximum 
of 50 evaluations of the objective function is set to 
balance the exploration of the hyperparameter space 
with computational efficiency. Using Bayesian 
optimization, we successfully identified the most 
effective hyperparameters for our neural network 
model. The optimal learning rate was 𝜂 = 0.0862. The 
batch size was optimized to 12. Furthermore, the 
activation function was established as ReLU. A five-fold 
cross-validation was also employed on the dataset to 
show the model's performance. Table 2 reports the 
results from the Bayesian optimization process. 
 

Table 2: Summary of weighted averaged results for 5-fold 
cross validation for Bayesian-optimized neural network. 

Fold Accuracy Precision Recall F1-
score 

Fold 1 93% 93% 93% 93% 
Fold 2 93% 93% 93% 93% 
Fold 3 97% 98% 97% 97% 
Fold 4 97% 98% 97% 97% 
Fold 5 93% 100% 93% 96% 

Average 94.6% 96.4% 94.6% 95.2% 
 

To evaluate the performance of Bayesian 
optimization, the results are compared across four 
different cases. First, an ANN is considered without the 
application of Bayesian optimization for 
hyperparameter tuning. In this case, the learning rate is 
set to 𝜂 = 0.01, and the activation function in the hidden 
layer is ReLU. Additionally, three other classification 
methods are considered: support vector machine 
(SVM), random forest, and decision tree. A summary of 
the results is reported in Table 3. All classification 
algorithms have been implemented in Python. 

 
 
 
 
 

 
Table 3: Summary of weighted averaged results from 5-fold 
cross-validation of common classification methods for fault 

detection. 

Criteria ANN 
without 

Bayesian 

SVM Random 
forest 

Decision 
tree 

Accuracy 91.6% 93.2% 92.4% 84% 
Precision 95.6% 94% 95.6% 96.6% 

Recall  91.6% 93.2% 92.4% 84% 
F1-score 93.2% 93.4% 93.4% 88.2% 

 
5. Discussion of Results 
        This study introduced a novel fault detection model 
using Bayesian optimization within a neural network. 
The incorporation of Bayesian optimization allowed for 
fine-tuning of the ANN hyperparameters. It significantly 
enhanced the model's performance in classifying faults, 
as compared to traditional methods such as support 
vector machines, decision trees, and random forests. The 
superior performance of the Bayesian-optimized ANN 
can be due to its ability to optimize learning rate, 
activation functions in hidden layers, and batch sizes, 
which are critical in adapting to the hidden patterns of 
signal data from the EHA system. 
        The analysis also highlighted two particularly useful 
features for fault detection: the VFD of pressures in two 
sides of the hydraulic cylinder. These features were key 
in achieving high classification accuracy, proving cost-
effective compared to other features such as velocity and 
position sensors. This finding is very important for 
practical applications, as it suggests a pathway toward 
fault detection with fewer sensors without sacrificing 
performance. 
        In this research, the exploration of hyperparameters 
was confined to learning rate, activation functions, and 
batch size. However, future studies could expand on this 
by considering other significant parameters such as the 
number of layers and the number of neurons in each 
layer, which might further enhance the model's accuracy, 
while reducing its complexity. Additionally, while the 
VFD proved to be an effective feature for fault detection, 
integrating additional features could potentially unveil 
more complex fault patterns and improve the 
performance of fault detection under varying 
operational conditions. 
 
6. Conclusion  
This paper discussed the application of Bayesian 
optimization within neural networks for fault detection 
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of an electro-hydrostatic actuation system. More 
specifically, a feature extraction method based on 
variance fractal dimension was developed within the 
neural network. Features were extracted from either 
side of pressures in both the cap and rod sides of the 
hydraulic actuators. We employed Bayesian 
optimization for tuning hyperparameters. The proposed 
approach improved fault detection accuracy and 
outperformed conventional classification methods, such 
as Random Forest, SVM, and Decision Tree. The results 
indicated an average accuracy of 94.6%, precision of 
96.4%, recall of 94.6%, and F1-score of 95.2% across 5-
fold cross-validation. Further research will explore 
additional hyperparameters and integrate more features 
to classify different levels of fault, which can be more 
beneficial in industrial applications. 
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