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Abstract - Due to the correlation between increasing system 
complexity and performance requirements, the need for globally 
robust control systems is more and more apparent. This paper 
proposes two extensions to a novel globally robust control 
system called sliding mode control (SMC). First, a new approach 
to estimating the boundaries of the influence matrix for a system 
without its model is developed. Next, the use of hyper-plane 
transformations in SMC is discussed. Both techniques were 
individually paired with sliding mode controllers and simulated 
against a nonlinear test system. In the future, these methods will 
be added to model free sliding mode control (MFSMC) to 
broaden the applicability of this type of controller. 
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1. Introduction 
As technology advances, systems modelling has 

become increasingly difficult. Furthermore, today’s 
complicated, high performing systems may contain more 
nonlinearities. As a result, traditional control methods, 
such as PID control, are often used at the cost of 
efficiency and performance. Modern Lyapunov-based 
controllers are more robust, which is important when 
stability is desired even with modelling assumptions and 
uncertainties. In many cases, however, the number of 
uncertainties makes using most Lyapunov-based 
controllers impractical. For example, a sliding mode 
controller used to control a system with high 

uncertainties would require a large controller gain, and, 
as a result, a high control output. 

To feasibly control these systems, multiple 
globally robust controllers have been developed. These 
controllers generally use two methods to achieve 
stability no matter the uncertainty: limiting the form of 
the error in the system or estimating the maximum 
uncertainty. One example of the first method was given 
in [1]. The LQR-based controller was proven to cause 
stability so long as the uncertainties were in the image of 
the control influence matrix. On the other hand, the 
controller in [2] would result in stability issues when a 
certain parameter was larger than a linear combination 
of the uncertainty and its derivative. An estimator was 
created to keep the parameter above the linear 
combination. Both controllers were tested and 
performed adequately but are limited in their scope 
(linear systems for [1] and second-order SISO systems 
for [2]). These two controllers illustrate the need for a 
broadly applicable globally robust controller; such a 
controller would guarantee stability no matter the 
system form. 

 
For under-actuated systems many different 

control methods have been developed using SMC. [3] 
compared four different types of SMCs used for 
underactuated systems. No estimation techniques are 
presented for tuning the parameters and chattering was 
also present causing issues in the real-time 
implementation of the designed controls strategies. [4] 
uses a combination of LQR and SMC wherein the states 
in the underactuated system are split within two 
different loops. While the proposed design is effective for 
the system defined, disturbance is present at various 
time intervals. Also, it might not work well in the 
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presence of uncertainties or when the system model is 
not accurate. The concept introduced in [5] follows 
complex mathematical formulations which could result 
in challenges during practical implementation.  

 
A controller with the potential to be broadly globally 

robust was introduced in [6] and developed in [7] and 
[8]. The controller method – known as Model Free 
Sliding Mode Control (MFSMC) – solved the issue of large 
uncertainties in the system by avoiding a system model 
entirely. Instead, it relied on the unity gain equation and 
assumptions which are as follows: 

 

𝒙⃑⃑  (𝒏) =   𝒙⃑⃑  (𝒏) + 𝑩[𝒖⃑⃑  − 𝒖⃑⃑  𝒌−𝟏] + 𝜺⃑   (1) 
 

𝜺⃑  =  𝑩[𝒖⃑⃑  𝒌−𝟏 − 𝒖⃑⃑  ] (2) 
 

𝛆̂   =  𝐁̂[𝐮⃑⃑  𝐤−𝟐 − 𝐮⃑⃑  𝐤−𝟏] (3) 
 

|𝜺⃑  |  < (1 + 𝜎𝑢)|𝜺̂ | (4) 
 
 𝑩𝒊𝒋,𝒎𝒊𝒏 < 𝑩𝒊𝒋 < 𝑩𝒊𝒋,𝒎𝒂𝒙   (5) 

 

 Where 𝒙⃑⃑  (𝒏) 𝜖 𝑹𝒏×𝟏 wherein n represents the 
system states, B is the control or input gain matrix and is 
given by 𝑩𝒊𝒋 𝜖 𝑹

𝒏×𝒎  with m representing the number of 

inputs, 𝒖 ⃑⃑  ⃑ 𝜖 𝑹𝒎×𝟏 is the control input and 𝜎𝑢 is the 
boundary constant in MFSMC. Sliding mode control 
techniques are then applied and the resultant controller 
is of the form:  
 

u⃑ =   𝐁̂ −𝟏[−𝐱̃  − 𝛆̂  − (s  ̇  − 𝐱̃ (𝒏))  − κ⃑   ∘ 𝑠𝑔𝑛(𝐬  )] (6) 

  
 

𝜅 = |𝜷 − 𝐼|(|𝒙̃ (𝒏)| +| 𝐬  ̇  − 𝐱̃ (𝒏)|) +
|𝜷 (1 + 𝜎𝑢) − 𝑰||𝜺̂ | + 𝜷𝜂   

(7) 

 
Where 𝐬  is the sliding condition, 𝜅  is variable 

boundary layer discontinuous switching gain, 𝜷 is the 

square root of Bij,max/Bij,min, 𝑰 is the identity matrix, 𝜂  is 

discontinuous switching gain. A boundary layer 𝛷⃑⃑  was 
also introduced to reduce dithering. A derivation in a 
sliding mode context is given in [9]. 

These papers demonstrated MFSMC was 
applicable to all square systems (systems in which the 
number of control inputs is equal to the number of non-
derivative states) so long as the bounds of the influence 
matrix were known. [10] proposed the use of an 

estimator for the parameter 𝜂 , which would avoid the 
need to know the bounds on the input matrix. Due to 
efficiency concerns, [11] adapted the estimator to find 
the matrix directly. While the controller-estimator 
combination stabilized several test systems, the 
performance of the estimator was sub-par in some 
circumstances. 

Currently work is being performed to solve both 
limitations. In this work, both a method for estimating 
the bounds on the influence matrix and the use of a 
hyper-plane transformation for the control of non-
square systems are presented. Results of using these 
techniques in a sliding mode context are presented. In 
the future, these methods will be adapted to MFSMC. 
 
2. Sliding Mode Control  
2.1. Boundary Estimation 

Using a traditional estimator in MFSMC is more 
difficult than it may first seem – without a model, finding 
a suitable regression equation is not straightforward. 
The method in [11] was adapted using a least squares 
estimator with bounded gain forgetting. Rather than 
deriving the estimator from a relationship involving the 
influence matrix, [11] created a least-squares with 
bounded gain forgetting estimator using the sliding 
condition. The condition was developed as a part of 
sliding mode control: 

 

 (𝛷⃑⃑  ̇  − 𝜂  ) ∘ |𝑠  | ≥ 𝑠   ∘ 𝑠  ̇  (8) 

𝒔⃑ = [
𝑑

𝑑𝑡
+ 𝜦]

𝑛−1

𝒙̃ (9) 

 
Where 𝜦 is positive definite matrix, 𝒙̃   is the 

difference between the current states  𝐱⃑   and their desired 
values 𝐱⃑  𝒅 and “∘” is an element-wise product. When Eq. 
(8) is satisfied, the system is stable. The estimate is 
multiplied by a factor to estimate the matrix’s bounds. 
The new technique similarly uses the sliding condition. 
Given a system of the form: 
 

𝒙⃑⃑  (𝒏) =   𝒇⃑  (𝒙⃑⃑  (𝒊)  , 𝒕) + 𝑩(𝒙⃑⃑  (𝒊)  , 𝒕)𝒖⃑⃑  (10) 

 

the estimator’s goal is to find the influence matrix 
bounds. Start by substituting Eq. (10) into Eq. (9) and 
rearranging to obtain: 

 

 𝑠𝑔𝑛(𝒔⃑  ) ∘ 𝑩𝒖⃑⃑ ≥ 𝑠𝑔𝑛(𝒔⃑  ) ∘

[𝒙⃑⃑  𝒅
(𝒏)

− 𝒇⃑  − (𝒔⃑  ̇  − 𝒙̃ (𝒏))] + (𝛷⃑⃑  ̇   − 𝜂  )  
(11) 
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Next, multiply both sides by a factor  𝛼  which is 1 

when the sliding condition is not satisfied and -1 in all 
other situations. Note doing so flips the inequality. The 
factor generalizes the inequality to all states of the 
sliding condition.  

At this point, the derivation diverges for coupled 
and decoupled systems. First, consider the case when the 

system is decoupled (B is diagonal). If b⃑   is a vector of the 

diagonal elements of B (𝐁 =  𝑑𝑖𝑎𝑔(b⃑  )), the left side 

reduces to: 
 

 𝛼   ∘ 𝑠𝑔𝑛(𝒔⃑  ) ∘ 𝑩𝒖⃑⃑  = 𝛼   ∘ 𝑠𝑔𝑛(𝒔⃑  ) ∘ 𝒃⃑⃑   ∘ 𝒖⃑⃑  

=  𝑑𝑖𝑎𝑔(𝛼   ∘ 𝑠𝑔𝑛 ( 𝒔⃑   )  ∘  𝒖⃑⃑  )𝒃⃑⃑  
(12) 

 
The final step is to define the following values: 

 
𝑨 =   |𝑑𝑖𝑎𝑔 ( 𝛼   ∘ 𝑠𝑔𝑛 ( 𝑠   ) ∘ 𝒖⃑⃑   )| (13) 

 
𝑞  =   𝛼   ∘

(|𝛷⃑⃑  ̇   − 𝜂   + 𝑠𝑔𝑛 ( 𝑠   ) ∘ (𝒙⃑⃑  𝒅
(𝒏)  − (𝒔⃑  ̇  − 𝒙̃ (𝒏)))| + 𝒇 ∘ (𝑠𝑔𝑛 ( 𝒔⃑   ))2)  

(14) 

 

𝒇 =

 {
𝑚𝑖𝑛(|𝒇⃑  𝒎𝒊𝒏| , |𝒇⃑  𝒎𝒂𝒙|), 𝑩𝒎𝒊𝒏 𝑖𝑠  𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑

𝑚𝑎𝑥(|𝒇⃑  𝒎𝒊𝒏| , |𝒇⃑  𝒎𝒂𝒙|), 𝑩𝒎𝒂𝒙 𝑖𝑠 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑
  

(15) 

 
Using these definitions, the influence matrix 

bounds may be estimated as: 

 
 𝑩𝒌|𝒌 =  𝑚𝑎𝑥(𝑩𝒌|𝒌−𝟏

 , 𝑩𝒌−𝟏|𝒌−𝟏) (16) 

 
𝑩𝒌|𝒌−𝟏   =  𝑑𝑖𝑎𝑔(𝑨+  𝒒⃑⃑  ) (17) 

 
Where 𝑨+ is the pseudoinverse of A and 𝑩𝒌|𝒌 is the 

current bounds estimate. 𝑩𝒌|𝒌−𝟏 is the exact solution to 

the equation. However, if any of the current values of B 
are less than their corresponding maxima, some of the 
estimated values will be too low. For that reason, the 
actual estimate 𝑩𝒌|𝒌 is found by comparing the 

equation’s solution with the last estimates. A similar 
approach may be taken to derive an estimator for 
coupled systems. In testing, these definitions – which are 
derived from the maximizations of each side of the 
inequality – performed better than alternatives. 

 
 

 
2.2. Hyper-plane Transformation 
 Using the MFSMC approach perfect tracking and 
stability for square MIMO systems have been obtained 
but additional methods are needed to guarantee tracking 
for underactuated (non-square) MIMO systems. A 
challenge in handling non-square systems is the non-
invertibility of the input gain matrix, making the 
formulation of the control law impossible. A potential 
solution involves employing a coordinate 
transformation of the system. Through the 
transformation, the originally "non-square" matrix can 
effectively be "squared," overcoming the non-
invertibility limitation and facilitating the formulation of 
the control law.  

Consider the following system in the matrix form: 
 

 𝒙 = 𝒇 + 𝑩𝒖 (18) 
 

Where 𝒙 represents the system states matrix, f 
represents the system functions in the matrix form, [B] 
is the non-square matrix and u is the control input 
matrix. A transformation matrix, [T] is considered for 
converting into the hyperplane, y: 
 
𝒚⃑⃑ = [𝑻]𝒙⃑⃑  (19) 

 
Where the dimensions of matrix [T] = the 

dimensions of [𝑩]′.  Eq. 19 can be rewritten as: 
 
𝒚 = [𝑻]𝒇 + [𝑻][𝑩]𝒖 (20) 
  

and the product of [[T][B]] is now square and invertible. 
The matrix [T] can be thought of as a weighing matrix. 
Since the system under consideration is underactuated, 
and states cannot display perfect tracking 
simultaneously, [T] can be used to track certain outputs 
"more heavily" than others. 

By applying SMC for a varying boundary layer, the 
control law is given by Eq. (21): 
 

𝒖 = (𝑻𝑩)−𝟏[𝑻(−𝒇̂+ 𝒙𝒅̈ − 𝜆𝑻(𝒙̇ − 𝒙𝒅̇)
− 𝑘∗(𝑥)𝑠𝑎𝑡(𝒔/𝜑))] 

(21) 

  

Where 𝒇̂ is the best estimate of  𝒇. Now:  
 
𝑘∗(𝑥) = 𝑘(𝑥) − 𝜑̇  (22) 

 
Where 𝑘∗(𝑥) is the variable boundary layer 
discontinuous switching gain.  𝑘(𝑥)  is given by:  
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𝑘(𝑥) = 𝑭(𝒙)  +  Ƞ  (23) 

 
Where 𝑭(𝒙) is:  

 
𝑭(𝒙) = |𝑻(𝒇 − 𝒇̂)| (24) 
  

The boundary layer equation is given by: 
 
 𝜑̇ +  𝜆 𝜑 =  𝑘(𝑥) (25) 
  

 
𝜑(0) =  𝑘(𝑥𝑑(0))/𝜆 (26) 
  

 
 To apply the model-free SMC method to an 
underactuated MIMO system, knowledge of the size of 
the [B] matrix of the system is required to formulate the 
transformation matrix [T]. Once that is known, the 
model-free SMC scheme can be developed in the y 
coordinate system, in a similar manner to the derivation 
in square MIMO systems, and [T] is used to relate y to x, 
and vice versa. 

 

3. Results 
3.1. Simulation Results for Boundary Estimator in 
SMC  

Simulation results for the nonlinear system 
represented by Eqs. (27) and (28) performed for SMC 
with and without boundary estimation are given in 
Figures 1 and 2. 

 

 𝑥̈1 = −𝑎1(𝑡)𝑥̇1
2 𝑐𝑜𝑠(2𝑥1) 𝑥2 + 𝑏11(𝑡)𝑢1 (27) 

 

 𝑥̈2 = −𝑎2(𝑡)𝑥̇2
2𝑥̇1𝑥2 + 𝑏22(𝑡)𝑢2 (28) 

 
Unsurprisingly, the controller with known bounds 

reaches the desired states faster overall (though state 2 
of the estimated controller beats that of the regular 
SMC). The discrepancy is due to the time spent 
estimating the boundaries. Figure 2 shows the boundary 
estimates are above the maximum values. While the 
amount of estimation would seem to cause inefficiencies, 
Figure 3 indicates the estimated SMC has a lower control 
output. 

 
 
 
 

 

Figure 1. Tracking performance with and without 
boundary estimator for a constant B system. 

 

Figure 2. Best guess, estimated, and actual B values for 
a decoupled, constant B system. 

Figure 3. Desired (dotted) and simulated (solid) 
state trajectories for SMC with boundary estimation 

on a coupled system. 
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Figures 4 and 5 show the SMC with boundary 
estimation’s performance, this time against a coupled 
system. In Figure 5, the estimator is giving values of δ, a 
parameter related to B by: 
 

𝜹 =  𝑩𝑩̂ −𝟏 − 𝐼 (29) 

  
The test system is the same as in Eqs. (27) and 

(28), except with 𝑏12(𝑡) and 𝑏21(𝑡) terms. Again, state 1 
is sluggish, but the system is still stable.  

 

 
 

3.2. Simulation Results for Hyper Plane 
Transformation in SMC 

Simulation for traditional SMC with hyperplane 
transformation including boundary layer for the given 
system below was carried out in Simulink with fixed-
step ode5 (Dormand-Prince) solver for 10 seconds. 

 
𝑥1̈ + 𝑎1(𝑡)[𝑥1 + 𝑥1̇] 𝑐𝑜𝑠 (𝑥2)  = 𝑢(𝑡) (30) 

 
𝑥2̈ + 𝑎2(𝑡)[𝑥2 + 𝑥2̇ − 𝑥1̇]|𝑥1| = 0 (31) 

 
The parameter values considered for the 

simulation are given in table 1.   

Table 1 Parameters and their values used in the 
simulation 

Parameters  Value 
Bounds of 𝑎1  1 - 2 
Bounds of 𝑎2  3 - 4 
Transformation Matrix, [T] [1 0.01] 
Lambda, λ 20 
Ita,  𝜂  0.1 

Phi, 𝛷⃑⃑  0.1 
 
Figures 6(a and b) and 7(a and b) from the 

simulation result plots, represent the closed-loop 

responses of the states of the system ( 𝑥1 ,  𝑥1̇ ,  𝑥2 , 𝑥2̇) 
and the desired signals. There is close to perfect 

tracking for 𝑥1 and 𝑥1̇ with the desired signals but 

tracking of 𝑥2 and 𝑥2̇  is lacking. This is because of the 

values set in the transformation matrix, [T], 𝑥1 and 𝑥1̇ is 

more heavily tracked than 𝑥2 and 𝑥2̇  . Based on the 
requirement, [T] matrix can be set to either track 𝑥1 and 
𝑥1̇ or 𝑥2 and 𝑥2̇. 

 

Figure 4. Desired (dotted), SMC (dashed) and 
SMC with boundary estimation (solid) state 

trajectories. 

Figure 5. Real (solid), best guess (dashed) and 
estimated maximum (dotted) values of B 
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While the original signal tracking of the system is 
based on the [T] matrix, it can be seen from Figure 8a the 
transformed systems signal tracking is close to its 
desired value. The controller effort for the system is 
displayed in Figure 8b. Figure 9a shows that the system's 
sliding condition is satisfied which again proves the 
system is stable in the tracking sense. From Figure 9b, 
the S-trajectories lie within the defined boundary layer 
further proving the sliding condition is satisfied. 

Figure 7a. Closed loop response of 𝑥2 𝑣𝑠 𝑥2𝑑
 

Figure 8a. Closed loop response of 𝑦 ̇ 𝑣𝑠 𝑦𝑑̇   

Figure 6a. Closed loop response of 𝑥1 𝑣𝑠 𝑥1𝑑
 

Figure 6b. Closed loop response of 𝑥1 ̇ 𝑣𝑠 𝑥1𝑑
̇  

Figure 7b. Closed loop response of 𝑥2̇ 𝑣𝑠 𝑥̇2𝑑
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4.Conclusion 
 This paper introduced two methods: One, the 

integration of MFSMC approach with an online 
parameter (boundary) estimation method for complex 
nonlinear systems which allows for dynamic updates to 
the control law based on evolving system characteristics. 
The introduced approach includes a boundary layer to 
limit chattering and has precise tracking along with 
proven stability. The second method is the integration of 
hyperplane transformation with a traditional SMC for 
non-square MIMO systems with the inclusion of 
boundary layer. The tracking in this method depends on 
the values chosen in the transformation matrix. The next 
steps would be to apply both methods to model-free 
control and evaluate their performance. Upon obtaining 
the results for model-free control then this type of 
control approach can be applied to any physical systems 
making it more robust and stable. 
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