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Abstract - We introduce a hybrid CNN-GRU model in this study 
to classify exercises using IMU time-series data, with a focus on 
jumping jacks, lunges, and squats. By combining Convolutional 
Neural Networks with Gated Recurrent Units, our model 
effectively manages the high dimensionality and variable 
sampling rates of IMU data. We employed data normalisation 
and augmentation techniques to refine the dataset. Our model 
showed high accuracy in classifying types of exercises, 
highlighting its potential in motion classification and fitness-
tracking applications. These results emphasise the value of 
hybrid deep learning methods in analysing complex time-series 
data and make a significant contribution to the understanding 
of human exercise movement patterns. 
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1. Introduction 
Advancements in exercise physiology and sports 

psychology have driven the evolution of exercise 
classification, a multidisciplinary field crucial to health 
and fitness, sports science, and public health policy. This 
classification plays a vital role in crafting targeted 
exercise plans and gauging the impact of physical 
activities. With the integration of machine learning and 
data analysis, classification has grown more 
sophisticated, offering more personalised fitness advice 
and improving injury prevention in sports medicine. 

Recent technological strides have pivoted the focus to 
time-series data from Inertial Measurement Unit (IMU) 
sensors, which are widespread in smartphones and 
wearable devices. These sensors, which we prefer over 
video data, provide precise measurements of physical 
movements and are less intrusive, making them perfect 
for capturing the subtleties of exercises while preserving 
privacy. Traditional classification models like Support 
Vector Machine (SVM), Random Forest (RF), K-Nearest 
Neighbours (KNN), and Hidden Markov Models (HMM) 
struggle with the high-dimensional nature of time-series 
data. Each model comes with strengths—for instance, 
SVM's robustness in high dimensions and RF's 
proficiency in unravelling complex data relationships. 
Yet, they also grapple with issues like computational 
inefficiency and challenges in capturing time-series 
data's temporal dynamics. As a result, exercise 
classification is increasingly harnessing advanced IMU 
sensor data, driving the need for sophisticated models 
capable of efficiently and accurately navigating its 
complexity and dimensionality for motion recognition 
and classification. 

Our study sets out to improve motion classification 
using IMU time-series data by developing a hybrid CNN-
GRU model. This model marries Convolutional Neural 
Networks (CNNs) for spatial feature extraction with 
Gated Recurrent Units (GRUs) to capture temporal 
dynamics, tackling the high-dimensional challenge of 
IMU data. We focus on the model's ability to process IMU 
data with varying sampling rates and to boost 
classification efficiency and accuracy. Through a 
comparative analysis with current models, we will 
confirm the superiority of this hybrid approach. We 
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anticipate that our model, which integrates CNNs with 
GRUs, will make a significant mark in managing complex 
IMU time-series data for exercise motion classification. 
 

2. Related Work 
Significant evolution marks the field of exercise 

classification, which now blends traditional methods 
with cutting-edge technologies. Lu et al. [1] have 
pioneered the use of IMU data for fine-grained activity 
recognition, thus paving new paths in this domain. Wang 
et al. [2] advanced the field by using HMMs for arm 
gesture classification with IMUs in medical 
rehabilitation, highlighting the method's diverse 
applications. Recently, researchers have been 
investigating the capabilities of CNNs and GRUs under 
various circumstances. Ahmed et al. [3] employed a 
combination of CNN, LSTM, and GRU models, including 
hybrid CNN-GRU architectures, for speech emotion 
recognition. Chiu et al. [4] put into action a CNN-GRU 
hybrid network to forecast building energy 
consumption, underlining the combined strengths of 
CNNs and GRUs in capturing spatiotemporal features. In 
a similar vein, Khan et al. [5] utilised a CNN-LSTM model 
for motion classification with depth camera sensors, 
proving the adaptability of these models with different 
types of sensor data. 

IMU data has played a pivotal role in classification 
tasks. Eyobu et al. [6] have brought forward innovative 
data augmentation methods such as window slicing and 
jittering for IMU data in Human Activity Recognition 
(HAR). Wang et al. [7] evaluated individual models like 
CNN, LSTM, and GRU for animal behaviour classification, 
demonstrating their efficacy. Concurrently, Ferrari et al. 
[8] employed CNN-based ResNet models for human 
activity recognition using accelerometer data, thus 
expanding the horizons of IMU data usage. Although 
current research is expansive, it reveals discernible gaps. 
Theissler et al. [9] underscore the demand for 
explainable AI in time series classification, a niche that 
current models have scarcely filled. Small et al. [10] have 
probed the impact of reduced accelerometer sampling 
rates on activity monitoring, hinting at more efficient 
data collection methods. The resampling methods that 
Wang et al. [11] suggested for sensor data augmentation 
could address challenges associated with scarce labelled 
data. Broad overviews provided by Lima et al. [12] and 
Kim et al. [13] suggest a strong need for further empirical 
research that utilises detailed datasets and testing to 
confirm these methods' practicality. These identified 
gaps offer chances for future research endeavours to 

develop more efficient, explainable, and empirically 
proven methods in exercise classification. 
 
3. Methodology 
 
3.1. CNN and GRU 

We deploy this research on a CNN-GRU hybrid 
deep learning model that combines CNN and GRU 
architectures to focus on motion analysis from IMU time 
series data. This hybrid model uses CNN for spatial 
feature extraction and GRU for temporal sequence 
processing. The CNN component structures itself to 
effectively process the time-series input data, with 
convolutional layers that employ a set of learnable 
filters. These filters capture spatial dependencies 
through convolution operations between the filters and 
the input, creating feature maps. Batch normalisation 
follows the convolutional layers to stabilise the learning 
process and enhance the model’s efficiency. We can 
optionally insert a pooling layer to reduce the output's 
spatial dimensions, which helps lower computational 
demands and prevent overfitting. 

The GRU component, succeeding the CNN, 
processes the temporal features we extracted earlier. 
GRUs are adept at handling data sequences, with each 
unit featuring an update and a reset gate that govern the 
flow of information, crucial for capturing the temporal 
dynamics and dependencies in IMU data. We integrate by 
extracting spatial features with the CNN, then 
normalising these features and transposing the matrix 
for GRU compatibility. The GRU processes these 
normalised features, culminating in a final classification 
output from a fully connected layer that merges spatial 
and temporal insights, as illustrated in Figure 1. 

 
 



 

56 
 

Figure 1. CNN-GRU Hybrid Model 

 
3.2. Data Collection 

We gathered data for this study using an Android 
application named "Sensor Logger"[14] that is selected 
for its precise capture of a wide spectrum of motion data. 
The first participant executed a series of exercises – 
Jumping Jack, Lunge, and Squat – repeating each exercise 
in ten distinct sets to ensure a diverse and 
comprehensive dataset that captures a range of bodily 
motions and exercise dynamics. The app collected IMU 
data, which included accelerometer readings along the x, 
y, and z axes to track linear acceleration movements, and 
orientation data through quaternions (qx, qy, qz, qw) and 
Euler angles (roll, pitch, yaw). We recorded total 
acceleration data on the x, y, and z axes, providing a full 
view of the dynamic and static forces on the body during 
exercises. However, the sampling rates of these sensor 
readings varied due to the performance constraints of 
mobile devices and limitations in the Android operating 
system. For example, the accelerometer's sampling rate 
during the Jumping Jack exercise fluctuated between 
52.7128 Hz and 52.7148 Hz, and the orientation sensor's 
rate varied between 59.5660 Hz and 60.4022 Hz. 

To standardise the variable sampling rates, we 
applied a uniform down-sampling procedure to all the 
data, setting it to a consistent rate of 50 Hz. We used 
interpolation methods to align all data types to this fixed 
frequency, ensuring dataset consistency and 
comparability. After standardisation, we segmented the 

continuous raw sensor data into discrete sets 
corresponding to the specific exercises performed, 
resulting in 30 labelled datasets, with ten for each 
exercise type. We based the segmentation on pattern 
detection through human observation and expertise, and 
we implemented this in Python to automatically 
distinguish and separate different exercise movements. 
To augment the original dataset's limited size of 30 
exercise groups and enhance its size and diversity, we 
applied data augmentation techniques. We introduced 
realistic variability by adding random multiplicative 
noise to 30% of the sampling points, each multiplied by 
a random coefficient ranging from 0.8 to 1.1. Moreover, 
we generated new subsequence from each exercise 
sequence by randomly selecting start and end points 
within the original sequences, thereby expanding the 
dataset and introducing randomness crucial for a diverse 
and robust training set. 

Another key aspect of data pre-processing was 
addressing the variability in the time durations taken by 
the participants to complete each exercise instance, 
resulting in inconsistent numbers of samples per set. We 
used interpolation to standardise each dataset to a fixed 
number of samples, as demonstrated in Figure 2. This 
method did not compromise the model's accuracy but 
significantly reduced the computational load during 
training. Additionally, we employed data visualisation 
techniques to confirm that the critical
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Figure 2. Sampling for 10 jumping jacks 
 

motion characteristics and patterns remained intact, 
ensuring the dataset's integrity and applicability for 
training the CNN-GRU model. Figure 3 displays the 
sampled dataset performed by the first participant.  

In addition to the initial dataset, an additional set 
of exercises was performed by the second participant 

under similar conditions, creating another 
comprehensive dataset. This second dataset, however, 
was used solely to test the robustness and 
generalizability of the trained model and was not 
included in the training process. The data collection and 
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Figure 3. Sampling movements by the first participant. 

 
processing methods for the second dataset mirrored 
those of the first, ensuring consistency and 
comparability. The inclusion of this additional dataset 
provided a valuable opportunity to evaluate the model's 
performance on unseen data, further validating its 
effectiveness and robustness. 

 
3.3. Model Training 

We structured the training of the hybrid CNN-GRU 
model and divided the IMU dataset into an 80% training 
set and a 20% test set to ensure comprehensive training 
and substantial unbiased evaluation. We fine-tuned 
significant architectural parameters, such as 
convolutional kernel sizes and the choice between max 
and average pooling layers, to optimise the model, 
deliberately excluding padding from these layers to 
concentrate on core motion patterns. We selected 
training parameters like learning rate, batch size, and the 
number of epochs with an eye on balancing efficiency 
and the use of computational resources. We chose all 
hyperparameters through a grid search cross-validation 
strategy to boost machine learning performance metrics 
like accuracy and efficiency. Since we set 
hyperparameters before learning, the system could not 
correlate them with the data, necessitating an exhaustive 
exploration of their combinations to find the optimal set. 
Our grid search cross-validation strategy varied 
parameters within predefined ranges to rigorously test 
the model's sensitivity to different hyperparameter 
combinations. This systematic exploration of the 

parameter space helped us find a balance between 
maximising prediction accuracy and the efficient use of 
computing resources. We used accuracy as the primary 
performance metric during training, providing direct 
and clear feedback on the model's effectiveness, 
especially during regular assessments with the 20% test 
set. This focused evaluation strategy allowed for timely 
and precise model adjustments, securing its accurate 
exercise classification capability and demonstrating the 
utility and efficacy of our methodology in deep learning 
applications for motion classification. 
 

4. Implementation 
We implemented the CNN-GRU model using 

Python and the PyTorch framework, renowned for its 
neural network modelling efficiency. Google Colab 
served as our primary platform, providing access to 
high-performance GPUs. This setup offered us a 
powerful combination of flexibility and computational 
strength, perfectly suited for deep learning tasks without 
the need for sophisticated local hardware. At the 
project's outset, we established the Python environment 
in Google Colab, installing PyTorch and preparing 
dependencies. We formatted and normalised the pre-
processed IMU data, preparing it for the training phase. 
Then, we constructed the CNN-GRU model, coding the 
convolutional and GRU layers and integrating essential 
components for effective learning. Key training 
parameters like learning rate, batch size, and epoch 
count were set, along with tools for monitoring the 
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model's training progress. The model was trained with 
the training set, constantly monitored, and fine-tuned 
based on performance metrics. After training, we tested 
the model on the test set to assess its accuracy and 
generalisation capability. We addressed challenges like 
variable IMU data sampling rates and durations by 
applying interpolation for standardisation. To enrich the 
dataset, we used data augmentation methods, including 
noise addition and subsequence extraction. We managed 
the computational demands by utilising Google Colab’s 
GPU resources, which ensured an efficient training 
process. These steps were critical in developing a high-
performing and robust CNN-GRU model for motion 
classification, overcoming obstacles to enhance 
performance, and proving the model's practicality in 
deep learning for motion analysis. 

To further evaluate the model’s robustness and 
generalizability, we tested it on the additional unseen 
dataset, which was collected under similar conditions 
but from a different participant. This additional testing 
phase involved rigorous analysis to ensure that the 
model’s high performance was not limited to the initial 
dataset. 

 
5. Results and Discussion 
 
5.1. Model Evaluation 

Table 1 shows the performance evaluation of 
various models on both the training and test sets 
revealed significant findings. The Random Forest model 
showed an accuracy of 0.81 on the training set and 0.85 
on the test set, serves as a robust baseline and 
demonstrates decent generalization capabilities. 
However, its performance is limited by its inherent 
inability to capture complex, non-linear relationships as 
effectively as deep learning models. The Support Vector 
Machine (SVM) model exhibited higher accuracy, with 
0.91 on the training set and 0.90 on the test set. This 
model is traditionally valued for its effectiveness in high-
dimensional spaces and for its ability to model complex 
boundaries using kernel tricks. Despite these strengths, 
the SVM struggles with very large datasets and extensive 
feature interactions, which are characteristic of complex 
sensor data. The Convolutional Neural Network (CNN) 
model showed improved accuracy, achieving 0.94 on the 
training and 0.91 on the test sets. CNNs excel in 
extracting spatial hierarchies of features and are 
particularly suited for datasets where spatial 
relationships are predictive of the outcome, as is often 
the case with IMU sensor data. The Gated Recurrent Unit 

(GRU) model matched CNN's test set accuracy at 0.91 but 
was slightly lower on the training set with 0.90. GRUs are 
adept at processing time-series data by capturing 
temporal dependencies, making them ideal for 
sequential sensor data. However, GRUs alone might not 
fully leverage the spatial aspects of the data, which are 
critical in sensor applications. 

The CNN-GRU hybrid model outperformed all 
individual models, achieving perfect accuracy on the 
training set and 0.97 on the test set. This hybrid model 
combines the spatial feature extraction capabilities of 
CNNs with the temporal modelling prowess of GRUs, 
providing a comprehensive approach to handling IMU 
sensor data, which contains both spatial and temporal 
patterns. This dual ability allows the CNN-GRU hybrid to 
excel, particularly in complex scenarios where both 
aspects of the data are crucial for accurate predictions. 

Additionally, we tested the models on the second 
dataset (Dataset 2), which was entirely used for testing 
purposes to further evaluate their robustness and 
generalisability. The CNN model achieved an accuracy of 
0.92, a recall of 0.90, and an F1-score of 0.90 on the 
second test set. This indicates that while the CNN is 
highly effective at extracting relevant features even from 
a completely unseen dataset, there remains a slight drop 
in performance compared to the training scenarios, 
possibly due to the variations in data distribution. The 
GRU model achieved a precision of 0.90, a recall of 0.87, 
and an F1-score of 0.86. The slightly lower scores 
compared to the CNN model highlight the GRU’s 
challenges in dealing with the spatial aspects of the data 
that are better captured by the convolutional layers of 
the CNN. This performance dip underscores the GRU’s 
primary strength in temporal data processing, which 
might be less effective alone in scenarios where spatial 
features also play a crucial role. The CNN-GRU Hybrid 
model again demonstrated superior performance with a 
precision of 0.94, a recall of 0.93, and an F1-score of 0.93 
on the second test set. This exceptional performance 
underscores the hybrid model’s capability to effectively 
integrate and leverage both spatial and temporal 
features of the data. The CNN component’s ability to 
interpret spatial patterns and the GRU’s proficiency in 
analysing time-series data complement each other, 
enabling the hybrid model to maintain high accuracy and 
robustness even when confronted with new, potentially 
more complex datasets. This reinforces the CNN-GRU 
hybrid modal’s adaptability and its suitability for diverse 
application scenarios, confirming its superiority over the 
individual models. 
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This comprehensive evaluation demonstrates that 
the CNN-GRU hybrid model not only surpasses 
traditional models like RF and SVM in handling complex 
sensor data but also excels in robustness and 

adaptability across diverse testing scenarios. This 
confirms its potential as a superior approach in 
advanced sensor data applications. 

 
Table 1: Execution results of all learning models (1.00=100%) 

Dataset Model Data Type Precision Recall F1-Score 

Dataset 1 

Random Forest 
Train Set 0.81 0.72 0.65 
Test Set 0.85 0.81 0.78 

Support Vector Machine 
Train Set 0.91 0.87 0.87 
Test Set 0.90 0.86 0.85 

CNN 
Train Set 0.94 0.94 0.94 
Test Set 0.91 0.89 0.88 

GRU 
Train Set 0.90 0.89 0.88 
Test Set 0.91 0.89 0.88 

CNN-GRU 
Train Set 1.00 1.00 1.00 
Test Set 0.97 0.97 0.97 

Dataset 2 
CNN Test Set  0.92 0.90 0.90 
GRU Test Set  0.90 0.87 0.86 
CNN-GRU Test Set  0.94 0.93 0.93 

 
Figure 4 shows the training and test loss 

trajectories across epochs for CNN, GRU, and CNN-GRU 
models. The CNN graph demonstrates a consistent 
reduction in both training and test losses decrease 
steadily, indicating effective learning and robust 
generalisation capabilities. The steady decline suggests 
that the CNN model is well-suited for capturing the 
spatial patterns in the dataset without overfitting. In 
contrast, the GRU graph shows high volatility with 
significant fluctuations in test loss, suggesting possible 
overfitting, sensitivity to the choice of hyperparameters, 
or challenges in the model’s ability to handle temporal 
dependencies with the given settings. Such spikes in loss 
highlight the need for careful tuning of the model, 
possibly adjusting learning rates or regularization 
strategies. The CNN-GRU hybrid graph exhibits a 
promising start with a smooth decline in training loss, 
yet the test loss presents variability that stabilizes after 
initial fluctuations. This pattern suggests that an early 
tendency towards overfitting, which the model manages 

to mitigate as training progresses. The stabilization and 
slight increase in test loss towards later epochs could be 
a sign of the model beginning to generalize better after 
initially fitting too closely to the training data. 

This comparison suggests the distinct learning 
behaviours of the models: the CNN is learning most 
consistently, the GRU may have difficulty capturing the 
temporal patterns or could be sensitive to 
hyperparameters, and the CNN-GRU combines elements 
of both, with a potential for overfitting that needs to be 
monitored. This analysis supports the conclusion that 
while individual models have their specific strengths and 
weaknesses, the CNN-GRU hybrid model leverages the 
advantages of both to achieve superior performance, as 
evidenced by its perfect scores on the training set and 
robust results on the test set. The hybrid model’s success 
in handling the IMU data signifies a substantial 
advancement in exercise classification accuracy, 
demonstrating the potential of combining convolutional 
and recurrent neural networks. 
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Figure 4. Comparison of the training and test loss for CNN, GRU, and CNN-GRU models. 

 

 
Figure 5 provides an overview of ROC curves for 

the three models that exhibit exceptional classification 
performance on the first set of test data for this multi-
class problem where class 0, class 1, and class 2 
represent jumping jack, lunge, and squat movements, 
respectively. All three models achieve perfect or near-
perfect Area Under the Curve (AUC) scores of 1.00 across 
most classes, indicating an excellent true positive rate 
without increasing the false positive rate. The slight 
deviation seen in the GRU model for class 2, with an AUC 
of 0.98, suggests a marginally lower but still outstanding 
ability to classify squats compared to the other 
movements. Overall, the near-identical AUC scores 
across all classes for each model suggest that all models 
are highly effective for this specific test dataset, although 
such perfect classification is uncommon in practice and 
could warrant further investigation to ensure the 
models' robustness. This remarkable performance may 
also imply that the dataset is well-suited to the models’ 
strengths or possibly lacks the complexity found in more 
variable real-world data. 

Figure 6 shows the ROC curves for the same three 
models but evaluated on the unseen dataset (Dataset 2). 
The ROC curves for this dataset indicate that the CNN 
model achieved AUC scores of 0.99, 1.00, and 0.95 for 
classes 0, 1, and 2, respectively. This highlights a 
consistent performance with slight variations in 
identifying class 2 (squats), which may benefit from 

further model tuning or data augmentation strategies. 
The GRU model achieved AUC scores of 0.93, 1.00, and 
0.90 for these classes, revealing its robust capability for 
class 1 but showing room for improvement in classifying 
more complex movement patterns of jumping jacks and 
squats. Meanwhile the CNN-GRU hybrid model 
consistently achieved perfect AUC scores of 1.00 across 
all classes, demonstrating its superior adaptability and 
effectiveness across different movement types. This 
underscores the hybrid model’s exceptional capacity to 
integrate spatial and temporal features effectively, 
optimising performance even in challenging 
classification scenarios. 

These results demonstrate the models’ robustness 
and generalizability, with the CNN-GRU hybrid model 
consistently showing superior performance. The slightly 
lower AUC scores for some classes in the CNN and GRU 
models suggest potential areas for further optimization, 
but overall, the high AUC scores across both datasets not 
only highlight the effectiveness of the models in 
classifying exercise movements but also suggest that the 
hybrid approach, in particular, may offer the most 
reliable method for dealing with diverse and challenging 
movement classification tasks in practical applications. 
This consistent excellence across diverse testing 
conditions speaks to the hybrid model’s potential as a 
robust tool for advanced motion analysis and other 
related fields. 
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Figure 5. ROC curves for CNN, GRU, and CNN-GRU models’ classification performance on the test data of Dataset 1: class 0, class 

1, and class 2 represent jumping jack, lunge, and squat movements, respectively 

 

 
 

Figure 6. ROC curves for CNN, GRU, and CNN-GRU models’ classification performance on the test data of Dataset 2: class 0, class 

1, and class 2 represent jumping jack, lunge, and squat movements, respectively 

 

5.2. Discussion 
The high accuracy and F1 scores achieved by the 

CNN and GRU models indicate their strength in 
extracting spatial and temporal features, respectively. 
However, the hybrid CNN-GRU model's superior 
performance suggests that integrating these models' 
strengths can capture the nuances of IMU data more 
effectively, leading to better classification outcomes. The 
findings align with existing literature that posits the 
superiority of hybrid deep learning models in various 
classification tasks. Studies like Lu et al. [1] and Ahmed 
et al. [15] have previously demonstrated the 
effectiveness of combining different neural network 
architectures, and our results further corroborate these 
observations in the context of exercise classification. The 
CNN-GRU model's high accuracy and generalisation 
capability indicate its potential for real-world 
applications, such as fitness tracking and rehabilitation 
monitoring. However, the model's complexity and the 
need for substantial computational resources might limit 

its deployment in resource-constrained environments. 
Future research could focus on optimising the model's 
computational efficiency and exploring its applicability 
in broader real-world scenarios. 
 
6. Conclusion 

This study evaluated the performance of various 

models, including traditional machine learning and 

advanced deep learning techniques, for classifying 

exercises using IMU data. The findings unambiguously 

demonstrate the superior performance of deep learning 

models, with the CNN-GRU hybrid model standing out by 

achieving nearly perfect accuracy. Specifically, the CNN-

GRU model outperformed traditional models such as 

Random Forest and Support Vector Machine and individual 

deep learning models like CNN and GRU in terms of 

precision, recall, and F1-score across both training and test 

sets. The results of this study have significant implications 

for the development of advanced exercise classification 

systems. By demonstrating the effectiveness of the CNN-



 

 63 

GRU hybrid model, this research highlights the potential of 

combining convolutional and recurrent neural networks to 

handle the spatial-temporal complexity inherent in IMU 

data. This insight is precious for health and fitness 

technology applications, where accurate exercise 

classification can contribute to personalised fitness tracking 

and rehabilitation programs. While the CNN-GRU model 

shows promising results, this study opens several avenues 

for future research. One potential area is exploring the 

model's applicability in real-time exercise classification 

systems, considering the computational demands of deep 

learning models. Additionally, future work could investigate 

the model's performance across a broader range of physical 

activities and in more diverse datasets, including those with 

varying levels of complexity and granularity. Another 

promising direction is enhancing the model's interpretability 

and explainability, which is crucial for applications in 

clinical settings where understanding model decisions can 

be as important as the decisions themselves. Lastly, research 

could also focus on optimising the model for deployment on 

edge devices, enabling more widespread and accessible 

fitness and health monitoring solutions. In conclusion, this 

study contributes to the growing body of knowledge on 

exercise classification, affirming the value of hybrid deep 

learning models in achieving high accuracy in complex 

classification tasks. With its robust performance, the CNN-

GRU model sets a new benchmark in the field and serves as 

a foundation for future innovations in exercise recognition 

and related areas. 
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