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Abstract - This paper offers an in-depth exploration into stock 
index forecasting, placing a particular focus on an array of time 
series decomposition techniques. Our investigation involved 
both non-recursive and recursive decomposition methodologies. 
Initial trials with non-recursive methods, such as Seasonal 
Decomposition using moving averages (SMA) and Seasonal-
Trend Decomposition using LOESS (STL), yielded varying 
degrees of success, with some models like SMA showing a 
relatively lesser performance. The superior results were 
achieved through recursive decomposition, especially with the 
Complete Ensemble Empirical Mode Decomposition with 
Adaptive Noise (CEEMDAN) followed by STL, termed as the C-
STL approach. Within our specified analysis period, this 
approach involved decomposing indices into 8 or 9 CEEMDAN 
sub-components, based on the specific index, with the STL 
method applied subsequently to each sub-component. Predictive 
results for these subcomponents were generated using a Support 
Vector Regression (SVR) model complemented with appropriate 
data transformations. Overall findings highlighted the recursive 
models, particularly the C-STL approach, as significantly 
outperforming non-recursive counterparts. This underscores 
the potential of recursive methods as a promising avenue for 
enhancing the precision of stock index forecasting. 
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1. Introduction 
In the realm of financial forecasting, predicting 

stock market indices continues to be a formidable 
challenge due to the inherent complexities, intricacies, 
and volatile nature of stock markets. Market movements 
are influenced by a myriad of factors, making the 
prediction task all the more difficult. The Efficient 
Market Hypothesis (EMH) [1] and the Random Walk 
Theory [2] postulates that stock prices are essentially 
unpredictable, suggesting that future prices are not 
necessarily dependent on past prices. The prediction 
task is further complicated by the dynamic nature of 
markets. According to [3], attempts to establish 
successful forecasting approaches rarely result in stable 
and enduring predictive patterns. This transience of 
profitable forecasting patterns underscores the difficulty 
of consistently achieving accurate predictions over 
extended periods. [4] suggests that even with the 
application of advanced AI strategies, such as machine 
learning algorithms for technical and fundamental 
analysis, the results have been median at best, implying 
that it may be premature to claim that AI technology can 
consistently beat the stock markets. Similar findings 
have been echoed in other research, further 
underscoring the formidable challenge of efficient stock 
market prediction. (see e.g., [5], [6]). Still, some research 

has indicated the possibility of prediction under certain 

circumstances, be it specific time frames, conditions, or 

with specific indices or stocks. (see e.g., [7]-[11]). 

These studies imply that the ability to predict markets 

could be context-specific. Recent advancements in 

computational power and the rise of machine learning 

algorithms have provided a fresh perspective on 

financial forecasting. Regression models, which predict 
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a continuous outcome, have been particularly useful in 

this domain. Unlike classification models that predict 

discrete outcomes, regression models provide a more 

nuanced understanding of market trends by predicting 

specific prices or index values. Previous studies have 

delved into a range of time series decomposition 

methods aimed at forecasting stock market indices. 

Prominent among these methods is the Empirical Mode 

Decomposition (EMD) [12], and its subsequent 

variations like the Complete Ensemble Empirical Mode 

Decomposition with Adaptive Noise (CEEMDAN) 

[13]. Examples of applications in forecasting stock 

indices using these methods can be found in studies 

such as those by [14]-[16]. Alternatively, some 
researchers have employed the Seasonal-Trend 
decomposition using LOESS (STL) [17] for similar 
forecasting endeavors (see e.g., [18], [19]). Another 
notable approach is the Seasonal Decomposition by 
moving average, as discussed in [20], with practical 
applications illustrated by [21]. 

Given these advancements and challenges, we 
sought to explore an innovative approach. Building 
on prior research, our study uniquely combines 
various decomposition techniques for enhanced stock 
forecasting. Support Vector Regression (SVR) emerged 
as a superior method for forecasting the sub-waves 
generated through our decomposition techniques. The 
spectrum of models tested ranged from simpler non- 
recursive methods employing Seasonal Decomposition 
by moving averages, STL, or CEEMDAN to more 
intricate recursive ones. 

Of particular note was a recursive model that first 
decomposed the stock index using CEEMDAN and 
subsequently decomposed each of those sub-waves with 
STL. This model stood out in our empirical analysis, 
showcasing the zenith of predictive accuracy. 
Intriguingly, models incorporating CEEMDAN 
consistently outperformed those using EMD, 
highlighting CEEMDAN's prominence in our tests. 

Our models underwent meticulous comparison 
against one another and were benchmarked against 
seminal models from existing literature. This rigorous 
evaluation framework ensures a holistic assessment of 
our methodology, contextualizing its position in the 
broad landscape of stock index forecasting. 

 
The remainder of this article is organized as 

follows: 

In Section 2, the Literature Review, we delve into 
methodologies in stock index prediction that employ 
decomposition techniques or closely related methods, 
contextualizing our approach amidst established 
practices. 

Section 3, Software and Data Sources, details the 
technological tools and datasets that drive our research. 

Section 4, the Data Overview, presents the 
specifics of the datasets, laying the groundwork for our 
experimental discussions. 

Section 5, our Methodology, we cover the entirety 
of our experimental approach, including the models we 
tested, the criteria we employed for comparison, our 
experimental setup, and our unique approach to feature 
engineering for SVR. 

Section 6, Experiment and Results, presents the 
outcomes of our research in detail, comparing the 
various methodologies we employed, and analyzing the 
resultant insights, all supported by a chart comparing the 
performance of the best model found to actual data. 

Lastly, in Section 7, the Conclusion and Future 
Work, we sum up our findings and provide avenues for 
subsequent research endeavors. 

 
2. Literature Review 

The forecasting landscape of stocks and stock-
indices has witnessed the application of a myriad of 
methods ranging from statistical models to advanced 
machine learning techniques. Yet, decomposition stands 
out as a powerful mechanism to uncover intricate 
patterns within stock market data. This review 
predominantly centers on decomposition 
methodologies, providing a prelude to more advanced 
and hybrid techniques used in forecasting. 
Decomposition has long been a foundational tool in time 
series analysis. Its primary objective is to parse a series 
into distinct components, usually trend, seasonality, and 
residual, thereby simplifying the forecasting process. 

One of the prominent methods in the domain of 
time series decomposition is the Empirical Mode 
Decomposition (EMD) [12]. At its core, EMD facilitates 
the decomposition of a time series into a set of oscillatory 
components known as intrinsic mode functions (IMFs). 
Unlike traditional decomposition techniques that rely on 
a priori basis functions, EMD dynamically adapts to the 
inherent oscillations in the data. The technique identifies 
the highest and lowest points in a time series and 
computes the mean envelope by averaging the upper and 
lower envelopes obtained through cubic spline 
interpolation. The detail extracted from subtracting this 
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mean from the data constitutes an IMF. This process is 
recursively applied until the residual becomes 
monotonic, resulting in a series of IMFs which capture 
cyclic behaviors across different time scales. 

Building on the foundation set by EMD, the 
Complete Ensemble Empirical Mode Decomposition 
with Adaptive Noise (CEEMDAN) was proposed as an 
enhancement [13]. Recognizing the occasional challenge 
posed by noise in EMD, CEEMDAN introduces white 
noise to the data multiple times, decomposes each noisy 
version with EMD, and then averages the results, thus 
giving a more robust decomposition. This variant has 
been extensively explored in stock market forecasting. 
For instance, Jin et al. [14] integrated EMD with deep 
learning architectures, highlighting its efficacy in 
disentangling intricate patterns in stock data.  

The Seasonal Decomposition of Time Series (STL) 
is another pivotal method in time series decomposition 
[17]. Unlike methods that impose a rigid structure on the 
time series, STL offers flexibility in capturing seasonality. 
The STL method decomposes a time series into three 
components: trend, seasonal, and remainder (or 
residual). It employs a sequence of "loess" (locally 
weighted scatterplot smoothing) methods to extract the 
trend and seasonal components. One of its notable 
strengths is its ability to handle any type of seasonality, 
not just the fixed periodic seasonality seen in some 
series. Due to its robustness and adaptability, STL has 
found applications in various fields, including stock 
market forecasting.  

Yet another tool for time series decomposition is 
Seasonal Decomposition by moving averages (SDMA) 
[20]. This method, more traditional in nature, is built 
upon moving averages and is particularly effective for 
series with stable seasonality patterns. In SDMA, a time 
series is broken down into its trend-cycle, seasonal, and 
irregular components. The simplicity and computational 
efficiency of SDMA make it a popular choice, especially 
when the focus is more on trend and seasonality 
extraction rather than intricate pattern identification. 

Several studies in the literature have harnessed 
these decomposition techniques in the context of stock 
market forecasting. Using the EMD technique previously 
discussed, Jin et al. [14] broke down complex stock price 
sequences into simpler sequences for easier forecasting. 
They then extracted investors' sentiments by analyzing 
comments from stockholders on StockTwits and Yahoo 
Finance using a modified CNN. The EMD-processed data, 
combined with this sentiment analysis, was input into an 
enhanced LSTM model with attention, leading to 

superior prediction accuracy on AAPL data. Rezaei et al. 
[15] decomposed financial time series of major stock 
indices like S&P500 and Dow Jones into multiple 
intrinsic mode functions (IMFs) and residuals. Each IMF 
and residual was individually subjected to analysis using 
neural networks to unveil hidden price trends and 
relationships. The predictions from each component 
were then aggregated to offer a comprehensive forecast 
for the whole index. In another study, Lv et al. [16] used 
CEEMDAN to decompose indices like the S&P500 and 
DAX into Intrinsic Mode Functions (IMFs). Stationary 
sequences of these IMFs were analyzed using ARMA, 
while non-stationary sequences utilized LSTM models. 
The combined results from both methods yielded 
superior prediction accuracy over seven other 
benchmark models when tested on various global stock 
indices. [18] employed machine learning to forecast the 
Nikkei 225 stock index over a five-day period. Four daily 
stock-price indicators (SMA, WMA, EMA, SG) were 
decomposed into trend and seasonal components using 
STL. These decomposed elements served as inputs for a 
multivariate two-way LSTM model. The model executed 
both regression (forecasting actual prices) and 
classification (anticipating price direction), achieving 
accuracy in predicting price direction at 66.25%. 
Another study that utilized STL was conducted by He et 
el. [19]. In their approach, financial data was 
decomposed into seasonality, trend, and residual 
components. The seasonal component, consistent across 
financial markets, was retained based on a 12-month 
cycle. The trend was captured using a cubic polynomial 
fit. For the residual component, reflecting post-
decomposition irregularities, they employed a Dendritic 
Neuron Model, which is an ANN with a structure inspired 
by biological neural architectures. This methodology, 
tested on 16 real-world stock market indices, showcased 
superior accuracy compared to other conventional 
models. Another notable approach to data 
decomposition is presented by [21]. In their study, a 
prediction method leveraging a form of seasonal 
decomposition, named SABL was introduced. This 
method predominantly utilizes Binary segmentation and 
Local polynomial regression techniques. The approach 
emphasizes the benefits of decomposing a series into its 
trend, seasonal, and residual components to enhance 
forecasting. While particularly effective for stock prices, 
its application to other assets, such as exchange rates, 
requires careful consideration. Building upon the 
foundational work highlighted in the preceding studies, 
our research carves out a unique niche. Our study 
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distinguishes itself through its innovative use of 
recursive decomposition in financial forecasting. While 
decomposition is a recognized approach, our recursive 
method delves deeper into the inherent structures of 
financial data, uncovering patterns often overlooked by 
traditional techniques. Coupled with a contemporary 
prediction model, our methodology provides a 
comprehensive analysis of financial patterns, and its 
adaptability promises applicability across various 
financial assets. 

 
3. Software and data sources 

The research utilized Python 3.9.7 in conjunction 
with the Spyder 5.1.5 IDE. Regression analyses were 
performed using the various algorithms available in the 
sklearn package [22]. Data for this research was sourced 
from Yahoo Finance [23] via the Python package 
yfinance [24]. Evaluation of regression results employed 
the sklearn.metrics Python package [25]. 

 
4. Data Overview 

The study utilizes daily closing prices of three 
major stock indices: NASDAQ 100, Dow Jones, and DAX. 
Data was sourced from January 1, 2010, to September 15, 
2022. This timeframe encompasses 3198 trading days 
for the NASDAQ 100 and the Dow Jones, while the DAX 
spans 3222 trading days. 

A chronological train-test split was adopted: the 
initial 2848 trading days were allocated for training for 
the NASDAQ 100 and the Dow Jones, from January 1, 
2010, to April 27, 2021. For the DAX, the first 2872 
trading days were used for training, spanning from 
January 1, 2010, to May 6, 2021. 

The subsequent 350 trading days, starting from 
April 28, 2021, for the NASDAQ 100 and the Dow Jones, 
and from May 7, 2021, for the DAX, up to September 15, 
2022, were designated for testing. This represents 
roughly 11% of the entire dataset for all three indices. 

 

5. Methodology 
 
5. 1. Models Tested 

We evaluated a diverse set of prediction models, 
encompassing both traditional and recursion-based 
decomposition techniques. To succinctly recap: 

 
 Simple Moving Average Decomposition (SMA): A 

non-recursive model employing Seasonal 
Decomposition using moving averages. 

 CEEMDAN Model (C): A non-recursive model 
exclusively utilizing CEEMDAN. 

 STL Model (STL): A non-recursive model 
leveraging STL Decomposition. 

 SMA-STL Recursive Model (SMA-STL): A recursive 
model initiating with SMA Decomposition of the 
primary stock index, with each resulting sub-
component further undergoing STL 
Decomposition. 

 CEEMDAN-SMA Recursive Model (C-SMA): A 
recursive model beginning with CEEMDAN 
Decomposition, followed by SMA Decomposition 
of each resultant CEEMDAN sub-wave. 

 CEEMDAN-STL Recursive Model (C-STL): A 
recursive model initiating with CEEMDAN 
Decomposition, succeeded by STL Decomposition 
of each resultant CEEMDAN sub-wave. 

 STL-CEEMDAN Recursive Model (STL-C): A 
recursive model beginning with STL 
Decomposition of the primary stock index, with 
each resultant sub-component further 
decomposed using CEEMDAN. 
 
For every model, our aim was to predict the 

succeeding value of each component, specifically a one-
day-ahead forecast. Through comprehensive testing, 
Support Vector Regression (SVR) emerged as the 
consistently superior predictor across all models. 

To provide further clarity on our modeling 
approach, we detail the specific parameters used for 
each technique: For the SMA, we adopted the 
configuration: 'model=additive`, 'two_sided=False`, and 
'extrapolate_trend=freq`. In the CEEMDAN model, 
ensuring consistent noise generation was crucial, so we 
set the noise seed using 'ceemdan.noise_seed(1234)`. 
For the STL decomposition, the seasonal component was 
specified as 'seasonal=5`. 

Detailed performances and comparisons will be 
elaborated upon in the subsequent sections. 

 
5. 2. Comparison Criteria 

The predictive performance of our models is 
assessed using a combination of widely recognized 
metrics and a metric introduced in this study, the 
Average of Absolute Return from Value to Value (AARV). 
The metrics utilized are: 

 
 AARV (Average of Absolute Return from Value to 

Value): This metric offers a more intuitive 
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understanding of daily fluctuations, providing 
insight into the average magnitude of changes 
between consecutive data points. It's defined as: 
 

AARV =
1

𝑁 − 1
∑ |

𝑝𝑖+1 − 𝑝𝑖
𝑝𝑖

|

𝑁−1

𝑖=1

× 100 (1) 

 
where pi is the price at point i, and N represents  
the total number of data points in the series. 

 RMSE (Root Mean Square Error) 
 MSE (Mean Square Error) 
 MAPE (Mean Absolute Percentage Error) 

 
For all metrics except AARV, their standard 

definitions as implemented in the sklearn.metrics 
Python package were used, as referenced in the Software 
and Data Sources section. 

 
5. 3. Experimental Setup 

We tested the predictive accuracy of various 
models using one-step-ahead prediction for the three 
indices previously mentioned. For each model, every 
final sub-component was individually predicted for the 
subsequent day. The aggregate of these predictions 
yielded the forecasted value of the original index. The 
rationale for this method is that predicting each sub-
component, being a simpler waveform with more 
discernible patterns, is ostensibly more accurate and 
feasible than forecasting the original index directly. 

 
5. 4. Feature Engineering for SVR 

Upon comparing various machine learning 
methods for predicting the next value of each sub-
component, Support Vector Regression (SVR) emerged 
as the optimal choice for all sub-component types. 
Specifically, we utilized the linear kernel parameter for 
SVR. The default parameters provided by the 
sklearn.svm.SVR [26] implementation were primarily 
used, with some modifications based on our 
experimentation. 

 
Deep analysis revealed that the predictive 

approach for the sub-wave obtained at the final stage of 
decomposition, when derived from SMA or STL, 
depended on the type of the sub-component. 

 
 Trend sub-component: The most accurate 

predictions were obtained using the last 20 values 
as input features to the SVR. This aligns with the 

nature of the trend, which is often a smooth 
progression without abrupt deviations. The 
intuition here is that recent values can predict the 
immediate future due to the trend's consistent 
nature. For preprocessing, we first applied 
differentiation to represent day-to-day changes. 
The differentiation is given by: 
 
Δ𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1 (2) 

 
where Δyt represents the day-to-day change in the 
trend sub-component value at time t, yt is the trend 
sub-component value at time t, and yt-1 is the trend 
sub-component value at the previous day, t-1.  
Following this differentiation, we applied the  
MinMaxScaler transformation. Both  
transformations were applied to the training data,  
and post-prediction values were reverse- 
transformed to the original scale. The use of  
differentiation emphasizes local changes, and  
normalization ensures SVR operates optimally  
since it's sensitive to feature scales. 

 Seasonality and Residual sub-components: 
For the seasonality component, given its nature  
which captures repeating patterns over fixed  
periods, it is inherently stationary. As such,  
differentiation wasn't deemed necessary.  
Meanwhile, the residuals, which represent the  
irregularities or noise after extracting other 
 patterns from both STL and SMA, appeared to be  
relatively stationary upon examination.  
Consequently, differentiation wasn't applied to  
them either. For both sub-components, we directly  
applied the MinMaxScaler normalization to the  
original values. The subsequent processing and  
prediction methodology for these sub- 
components mirrored that of the trend sub- 
component. 
 
Conversely, for intrinsic mode functions (IMFs) 

obtained from CEEMDAN during the final decomposition 
stage, the best predictions were obtained using merely 
the last 5 values for each IMF. The residue (or the trend 
component from CEEMDAN) was treated similarly. Data 
transformation was consistent with the process 
described earlier, applying differentiation followed by 
MinMaxScaler normalization. 

Table 1 summarize the different procedures 
adopted for creating the input features to best predict 
each sub-component type.
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Table 1. Summary of procedures for creating input features. 

Sub-Component Input Features (Last Values) Transformations 
Trend (SMA/STL) 20 Differentiation + MinMaxScaler 
Seasonality/Residual (SMA/STL) 20 MinMaxScaler 
All (CEEMDAN) 5 Differentiation + MinMaxScaler 

 

6. Experiment and Results 
In this section, we outline the results of our 

forecasting experiments conducted on three prominent 
stock indices: Nasdaq 100, Dow, and Dax. The primary 
objective is to discern which forecasting methodology—
recursive or non-recursive—offers superior predictive 
capabilities for stock movements based on our selected 
metrics MAPE, RMSE, and AARV. 

Evaluating the MAPE in conjunction with the AARV 
provides invaluable insights into the real-world 
predictive accuracy of our models. By contrasting the 
MAPE's error percentage with the average rate of stock 
value fluctuations (AARV), we can better assess the 
relative significance of prediction errors in the backdrop 
of standard market volatilities. For instance, a MAPE 
value lower than the corresponding AARV for an index 
indicates that our model's predictions surpass the 
average market volatility. This is significant as it implies 
that our model is capable of making accurate predictions 
that are not just reflective of general market fluctuations, 
but are indicative of a deeper, more nuanced 
understanding of market dynamics. 

All models exhibited R2 values of 0.94 and above, 
indicating a high degree of fit. We prioritized RMSE and 
MAPE for a more direct assessment of predictive 
accuracy. These metrics showed that both the recursive 

and non-recursive models achieved commendable 
accuracy across all indices, with the recursive models, 
particularly the C-STL approach, demonstrating superior 
performance. The C-STL model, for instance, achieved a 
MAPE score of 0.25% for the Dow index, significantly 
lower than the AARV of 0.77%, highlighting its 
exceptional predictive capability.  

The standout performance of the C-STL model can 
be attributed to its hybrid approach, combining the 
strengths of both CEEMDAN and STL decomposition. The 
STL model's effectiveness, even when used 
independently, is evident from our results. By initially 
deploying CEEMDAN, we decompose the data into 8 or 9 
simpler sub-components, allowing the STL method to 
then focus on these less complex segments. This step 
enhances the STL's ability to identify more nuanced 
patterns and trends, contributing to the superior 
performance of the C-STL model. The combination of 
CEEMDAN's noise reduction with the STL's robust 
seasonal decomposition facilitates a more detailed and 
accurate analysis of market dynamics, as demonstrated 
by our experimental data. 

 
Table 2 presents the findings from our non-

recursive models, while Table 3 does the same for the 
recursive counterparts. 

 
Table 2. Performance of Non-Recursive Models. 

 Nasdaq 100 Dow Dax 
AARV 1.23% 0.77% 0.93% 
Model RMSE MSE MAPE RMSE MSE MAPE RMSE MSE MAPE 
SMA 233.7 54,609.7 1.29% 371.3 137,843.4 0.85% 192.3 36,983.7 0.99% 
C 128.1 16,407.3 0.72% 222.4 49,460.3 0.52% 104.9 11,011.3 0.55% 
STL 92.3 8,523.2 0.50% 153.5 23,567.2 0.35% 73.5 5,409.4 0.38% 

 
Table 3. Performance of Recursive Models. 

 Nasdaq 100 Dow Dax 
AARV 1.23% 0.77% 0.93% 
Model RMSE MSE MAPE RMSE MSE MAPE RMSE MSE MAPE 
SMA-STL 103.642 10,741.6 0.57% 180.337 32,521.4 0.42% 81.259 6,603.0 0.42% 
C-SMA 132.248 17,489.5 0.74% 220.961 48,823.8 0.52% 116.546 13,582.9 0.63% 
C-STL 54.57 2,977.3 0.30% 108.30 11,728.5 0.25% 47.05 2,213.9 0.25% 
STL-C 123.71 15,304.9 0.68% 215.86 46,597.2 0.50% 111.09 12,339.9 0.58% 
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Both the recursive and non-recursive models 
demonstrated decent forecasting accuracy across all 
stock indices, as indicated by their RMSE scores. The 
recursive models generally outperformed on average, 
with the C-STL approach standing out. For our specific 
analysis period, this approach involves decomposing the 
index into 8 or 9 CEEMDAN sub-components (depending 
on the index) and subsequently applying the STL method 
to each. These procedures yielded promising results. 
Conversely, the SMA model showed a lesser performance 
in comparison to the other models we evaluated.  

For a clearer visualization of the predictive 
accuracy, we present a chart contrasting the real versus 
predicted values of the DOW index. We've sampled a 
segment from mid-May 2021 to mid-November 2021 for 
a concise and clearer illustration. This portion 
encapsulates the performance of our top-performing C-
STL model, providing insights into its effectiveness over 
the illustrated timeframe, particularly in its ability to 
closely track the actual stock values, thereby reinforcing 
the quantitative findings presented in Tables 2 and 3. 
The related chart can be found in Figure 1. 

 

 
Figure 1. Actual vs. Predicted DOW values using the C-STL model, May-Dec 2021. 

 

7. Conclusion 
 
7. 1. Summary and Key Findings 

In our study on stock index forecasting, we 
explored the effectiveness of various predictive models. 
Our analysis revealed that recursive models generally 
outperformed non-recursive models in terms of 
predictive accuracy. This trend was particularly notable 
in the performance of the C-STL model, which 
demonstrated superior forecasting capability across the 
Nasdaq 100, Dow, and Dax indices. The C-STL model, 
utilizing a hybrid approach of CEEMDAN and STL 
decomposition, consistently showed lower MAPE scores, 
indicating its higher accuracy. This finding underscores 
the value of recursive models, especially those involving 
sub-component analysis, in stock market forecasting. 

The results highlight the potential of these models in 
capturing complex market dynamics more effectively 
than traditional non-recursive approaches. 

 
7. 2. Future Directions 

Future research directions should focus on 
expanding the application of the C-STL model to a wider 
range of stock indices and market conditions. 
Investigating ways to enhance the computational 
efficiency of the C-STL model would also be beneficial, 
allowing for more extensive testing and refinement. 
Further exploration into the model's adaptability and 
robustness in different economic scenarios would 
contribute significantly to the field of stock market 
forecasting, balancing theoretical insights with practical 
utility. 
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