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Abstract - Pathologists use histopathological images to 
diagnose cancer, and one key step in this process is to detect and 
classify mitosis. Mitosis is the process of cell division, and it is 
essential for normal tissue growth and repair. However, 
abnormal mitosis can be a sign of cancer. Therefore, the ability 
to accurately detect and classify mitosis is crucial for cancer 
diagnosis. Traditionally, pathologists rely on manual methods 
for this task, which are labor-intensive, time-consuming, and 
expensive. Computer-aided diagnosis (CAD) leverages 
technologies like artificial intelligence, fuzzy logic, and image 
processing to assist pathologists in early detection and 
classification. This study introduces a hybridized methodology 
for detecting and classifying abnormal mitosis in breast 
histopathological images. The proposed approach comprises 
two stages. In the initial stage, deep learning techniques are 
employed for mitosis detection. Subsequently, fuzzy-based 
classifiers are utilized in the second stage for mitosis 
classification. The methodology is applied to the ICPR12 and 
ICPR14 mitosis datasets. Results indicate a substantial 
enhancement in both accuracy and reliability of mitosis 
detection and classification, showcasing the effectiveness of the 
proposed approach. 
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1. Introduction 
The World Health Organization (WHO) uses the 

Nottingham grading of breast cancer [1]. There are three 
main indicators used by clinicians to determine the 
breast cancer grade: (a) extent of tubule formation as an 
expression of glandular differentiation; (b) nuclear 
pleomorphism; and (c) mitotic count. Mitotic count is 
one of the most powerful prognostic factors for invasive 
breast cancer, and therefore the mitotic count is the most 
important indicator for the assessment of the 
malignancy of breast cancer. Computer-aided diagnosis 
(CAD) is the use of computer software to analyze medical 
images and assist radiologists in diagnosing. In digital 
pathology, privately designed microscopes with strong 
cameras are used to seize High-Power Field (HPF) 
images at high resolutions [2]. Mitosis detection or count 
is a predominant objective parameter in breast cancer 
grading and staging unlike other types of cancers. 
Mitosis, the nuclei division process in living organisms, 
has four major phases: prophase, metaphase, anaphase, 
and telophase [3]. However, the biological differences 
between mitotic cells pose a major challenge to manual 
labeling and identification, making it slow and prone to 
misdiagnosis. Differences already exist between 
pathological sections under different collection 
instruments and conditions, while mitotic cell shape and 
configuration change continuously at different growth 
phases (prophase, metaphase, anaphase and telophase). 
Also, many cells (e. g. lymphocytes, apoptotic cells, dense 
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nucleus) have a similar appearance to mitotic cells, 
making it difficult to effectively reduce the false positive 
rate. With this in mind, computer-aided diagnosis has 
become a hot topic in medical research, which can be 
roughly divided into two categories: traditional feature 
extraction algorithms and deep learning techniques. 

Mitotic count is the primary objective parameter 
used to detect and classify breast cancer, in contrast to 
other cancer types. The task of detecting and classifying 
mitosis with high accuracy and reliability is challenging 
due to the following reasons: (1) mitoses are small 
objects with a wide range of shapes and texture formats; 
(2) the different terms for tissue staining; and (3) the 
image acquisition process increases the diversity of 
mitosis shapes appearance. The appearance of mitotic 
shapes plays a crucial role in the process of cancer 
grading [4]. The grading of cancers indicates how similar 
they are to the parent tissue. The main aim of cancer 
grading is to determine the aggressiveness of the cancer. 
It measures how far the disease has spread from the 
original organ to other parts of the body. Detection of 
mitosis is a measure of the rate of cell division and 
therefore of the grade of cancer [3].  

The literature contains numerous studies on 
cancer diagnosis, focusing particularly on detecting and 
classifying mitosis. Significant progress has been made 
in cancer grading with the rapid advancement of deep 
learning models in cancer diagnosis. However, the 
desired level of accuracy and reliability in cancer 
diagnosis has not been achieved in the existing studies. 
The need for more effective research in the field has 
therefore increased [5]. Deep learning models for 
mitosis detection use false positives to learn the 
difference between mitotic and non-mitotic nuclei, but 
clinical datasets have more non-mitotic nuclei than 
mitotic nuclei, so the models are more likely to 
misclassify mitotic nuclei as non-mitotic.  

This study proposes a methodology for mitosis 
detection and classification to address this need. The 
proposed methodology includes two stages. In the first 
stage, deep learning techniques, such as Mask R-CNN [6], 
YOLOv5 [7], and YOLOv8 [8] are used to detect mitosis. 
In the second stage, fuzzy-based classifiers are used to 
classify the mitosis. This stage increases the rate of true 
positive mitosis. The performance of the proposed 
methodology is verified on the ICPR12 and ICPR14 
mitosis datasets.  

The remainder of the paper is structured as 
follows. Section 2 summarises the related studies on 
mitosis detection and classification. Section 3 describes 

the proposed methodology. Section 4 discusses the 
implementation results. Finally, Section 5 presents the 
conclusions. 
 

2. Related Work 
        Many studies have tried to detect and classify 
mitoses using deep learning and fuzzy-based techniques. 
A summary of some existing works is presented as 
follows: 
       Meriem Sebai et al. [9] proposed a two-stage Mask 
R-CNN-based framework, which firstly identifies the 
mitosis centroids and then detects mitosis based on 
instance segmentation. The framework respectively 
achieved F1-Scores of 0.863 and 0.475 on the ICPR12 
and ICPR14 datasets. 

  Dodballapur et al. [10] proposed a detection scheme 
based on Mask R-CNN, which uses ResNet-50 as the 
feature extraction network. Implemented on the ICPR12 
and ICPR14 datasets, this approach yielded notable 
results, particularly achieving a high recall rate. The F1-
score reached 0.68 for ICPR14, making it the method that 
attained the highest score at this stage. 

    R. Yancey [11] proposed the use of object 
detection networks such as YOLO (YOLOv3, YOLOv4-
scale, YOLOv5, and YOLOR) to improve the accuracy of 
mitosis counting. In these methods, the highest scores of 
0.95 and 0.96 were achieved on the ICPR12 and ICPR14 
mitosis datasets. 
      Nateghi et al. [12] proposed a method consisting of 
three main steps: mitotic activity region selection from 
the whole side image, mitotic cell detection, and tumor 
proliferation score estimation. Normalization was 
applied to the input image. A classification approach 
based on conventional neural networks was proposed to 
classify patches. Original and gamma-corrected 
hematoxylin patches were used to train an image-to-
image regression model using U-Net. A total of 24 
features were extracted, which were used to train an 
SVM classifier with Radian Basis Function (RBF) mitosis. 
In particular, an SVM classifier with RBF mitosis has 
good nonlinearity and can perform nonlinear 
classification efficiently.  
      Al Zorgani et al. [13] introduced a deep learning-
based method to automate mitosis counting in 
histopathological images the method mainly applies 
YOLOv2 with ResNet-50 backbone network as a feature 
extractor. The mitosis detection process was conducted 
on the ICPR12 breast cancer histopathology dataset, 
yielding promising outcomes. The method demonstrated 
effectiveness with an F1-score of 0.839. 
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       Thomas et al. [14] proposed an effective method 
for mitosis detection and segmentation in breast 
histopathology images. They utilized a fuzzy C-means 
clustering algorithm for initial mitosis detection and 
employed a random forest classifier for mitotic/non-
mitotic classification. The random forest classifier 
handles imbalanced and incomplete datasets with 
efficiency and accuracy. Evaluation on the ICPR14 
dataset resulted in a correctly classified sample rate of 
82.0946 and an F1-score of 78.0, demonstrating the 
method's efficacy in segmentation and classification. 

Anand et al. [15] introduced a Faster R-CNN model 
for detecting mitotic cells in breast tissue images. The 
model undergoes preprocessing steps such as Blot 
Normalization, Roboflow, resizing, and data 
augmentation. It identifies potential mitotic cell 
locations and conducts regression and classification for 
bounding boxes. The evaluation involved four backbone 
architectures, including ResNet-50-C4, ResNet-50-FPN, 
ResNet-101-FPN, and ResNeXT-101-32 × 8d-FPN, using 
the Mitosis Domain Generalization (MIDOG) 2021 
dataset. Notably, the ResNeXt-101-32 × 8d-FPN 
backbone achieved the highest performance with an F1-
score of 65.75. 

Hwang et al. [16] presented a two-phase method 
for mitosis detection, involving candidate segmentation 
and detection. The first phase employs a fuzzy candidate 
segmentation method, dynamically determining 
threshold values to distinguish mitotic candidates from 
the background in gray-level images. In the detection 
phase, a two-class classification employs an attention 
mechanism implemented by a set of fully connected 
neural networks, reducing computational costs 
compared to convolutional layers. The validation test 
was conducted on ICPR12 competition datasets. 

As seen in related works deep learning-based 
approaches for mitosis detection and classification have 
recently gained popularity due to their ability to learn 
complex features from data without the need for hand-
crafted feature extraction. Deep learning-based methods 
typically involve using convolutional neural networks 
(CNNs) to classify image patches. These studies are 
ongoing and We proposed a hybrid methodology for 
mitosis detection and classification that combines the 
detection of deep learning methods and fuzzy-based 
classifier. 
 
 
 
 

3. Materials and Methods 
3.1. Datasets used in experiments 

The most commonly used datasets for mitosis 
detection are ICPR12 [17], AMIDA13 [18], ICPR14 [19], 
TUPAC16 [20], MIDOG21 [21], MIDOG22 [22], and 
MIDOG++ [23]. In this study, the experiments focus on 
the ICPR12 and ICPR14 datasets. ICPR12 is a public 
dataset from the ICPR12 mitosis competition, featuring 
five breast cancer biopsy sections stained with H&E. 
Each slide comprises 10 high-power fields (HPF) at 40× 
magnification, selected by pathologists, totaling 50 HPFs 
with over 300 annotated mitotic cells. Scanning was 
performed using the Aperio XT scanner (scanner A), 
Hamamatsu Nano Zoomer scanner (scanner H), and a 
10-band multispectral microscope (M). Mitosis in each 
HPF was annotated, including the ground truth of mitosis 
centers. This dataset, containing mask annotations, is 
employed to train a Mask R-CNN network for mask 
generation. The ICPR14 dataset, weakly annotated with 
mitosis centroids, was also evaluated to showcase the 
model's ability to generate reliable masks for datasets 
with limited annotations. ICPR14 includes mitosis 
detection and nuclear atypia assessment, with multi-
expert opinions providing three evaluation categories: 
true mitosis, probable mitosis, and non-mitosis 
instances. Histopathological sections were stained by 
using Aperio Scanscope XT and Hamamatsu 
Nanozoomer 2.0-HT scanners. 
 
3.2. Proposed Methodology 

The overall methodology for mitosis detection and 
classification from H&E stained histopathology images is 
presented in Figure 1. The methodology involves the 
following stages: preprocessing, detection and 
classification. The stages are briefly explained in the 
following subsections.  

 
Figure 1. The overall diagram of the proposed methodology 
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3.2.1 Preprocessing 
In this stage, we apply the Macenko color 

normalization technique [24], which determines the 
stain vectors for each image based on the colors present. 
A pixel with an Optical Density (OD) value of 0 
represents no light absorption. The technique then 
employs a mechanism to find the optimal threshold 
value of β. Finally, it projects the OD-transformed pixels 
onto the geodesic direction to determine the stain vector 
endpoints. It is worth noting that Macenko has been 
widely applied to H&E stained histopathology images 
since it can provide reduced color variations, improved 
feature consistency, and increased model robustness. 
 
3.2.2 Mitosis detection 

In the mitosis detection stage, we use the following 
algorithms:  

a) YOLOv5 [7]: YOLOv5 requires only a single pass 
through the neural network to predict all bounding 
boxes. This feature makes YOLOv5 faster than any other 
traditional detection algorithm. YOLOv5 consists of 
three main components: first is Cross Stage Partial 
Network (CSP) is used as the backbone to extract 
informative features from an input image CSPNet is used 
to achieve a good gradient combination and reduce the 
computational complexity, which is achieved by splitting 
the base layer feature map into two parts and joining 
them through a proposed cross-level hierarchy. The 
second component is the PANnet is used as a model 
throat that generates feature pyramids and scales the 
features. The YOLOv5 model uses the last component 
YOLO layer as the head layer for final object recognition. 
This layer generates 3 different sizes of feature maps 
(bounding boxes) to achieve optimal prediction. 
Depending on the size of the mitosis, this layer allows the 
model to deal with small, medium, and large mitosis.  

b) YOLOv8 [8]: YOLOv8 is an anchor-free model, 
which means that it does not use anchor boxes to predict 
the location and size of objects. Instead, YOLOv8 directly 
predicts the center point and size of objects. This makes 
YOLOv8 more accurate and efficient than YOLOv5, 
especially for small objects. The YOLOv8 architecture 
consists of two main parts: the backbone and the head. 
The backbone is a CNN that is responsible for extracting 
features from the input image. The head is a CNN that is 
responsible for predicting the presence of objects in the 
image, as well as their bounding boxes and class labels. 
The YOLOv8 backbone is a modified version of the 
CSPDarknet53 architecture. CSPDarknet53 is a very 
efficient CNN architecture that is well-suited for object 

detection tasks. The backbone part of YOLOv8 is 
basically the same as that of YOLOv5, and the C3 module 
is replaced by the C2f module based on the CSP idea.  
YOLOv8 and YOLOv5 are used because YOLOv8 is only 
being compared to YOLOv5. YOLOv5’s performance and 
metrics are closer to YOLOv8’s.  

c) Mask R-CNN with UNet++ [6]: Mask R-CNN 
uses the same two-stage procedure as previous systems, 
with the same first stage (RPN). However, in the second 
stage, Mask R-CNN predicts a binary mask for each ROI 
in addition to the class and bounding box offset. This is 
in contrast to most recent systems, where classification 
is dependent on mask predictions. The UNet++ backbone 
is an encoder-decoder network that extracts features 
from the input image at multiple scales. To implement a 
Mask R-CNN model with UNet++ as the backbone 
network, we first train a UNet++ model on the dataset. 
The anchor box sizes for Mask R-CNN are determined 
using an empirical approach, involving the clustering of 
the height and width of the ground truth bounding boxes 
in the training set. The model predicts masks for mitosis 
cells, along with confidence scores and bounding boxes 
that indicate the location and size of each mitosis. 

 

 
                         (a)                                 (b) 

 
                   (c)                                       (d) 

Figure 2. Mitosis detection with Mask R-CNN 
 

Figure 2 shows the detection of mitosis using Mask R-
CNN. Figure 2.a shows the original image, Figure 2.b 
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shows the image with ground truth annotation, Figure 
2.c shows the masked mitosis in green by Mask R-CNN, 
and Figure 2.d shows the bounding boxes in yellow that 
match the ground truth mitosis. Other non-annotated 
cells are hard negative cells, which are false positives. 
 

3.2.3 Mitosis classification 
For the mitosis classification stage, we employ the 

following fuzzy-based classifiers, which are trained to 
learn the subtle patterns and characteristics that 
distinguish true mitosis from other structures. The 
classifiers are described as follows:  

a) Fuzzy Random Forest (FRF) [25]: FRF is an 
ensemble method based on fuzzy decision trees. This 
algorithm combines the strengths of random forests and 
fuzzy logic to create a machine learning algorithm that is 
robust to noise and missing data and can achieve good 
classification results with even relatively small 
ensembles. This algorithm is used to reduce bias in 
feature selection and handle imbalanced data effectively 
by adjusting the fuzzy membership degrees of the 
features according to the class distribution. This makes 
sure that the algorithm takes minority groups into 
account, resulting in more balanced and accurate 
forecasts. It combines the robustness of ensemble 
classification, the power of randomness in reducing the 
ratio between trees and increasing the range, and the 
flexibility of fuzzy logic in handling incomplete data. 

b) Fuzzy K Nearest Neighbor (FKNN) [26]: 
FKNN assigns class membership to a sample vector 
rather than assigning the vector to a particular class. The 
advantage is that no arbitrary assignments are produced 
by the algorithm. Fuzzy K Nearest Neighbor (FKNN) is a 
supervised algorithm that extends the traditional K-
nearest neighbors (KNN) algorithm by incorporating 
fuzzy logic. KNN is a simple but effective algorithm that 
works by classifying new data points based on the labels 
of their K nearest neighbors in the training data. FKNN 
enhances the KNN algorithm by allowing each data point 
to have a degree of membership to each class, rather than 
simply assigning a single class label. This is done by 
calculating a fuzzy membership value for each data point 
to each class, based on its distance to the K nearest 
neighbors in that class. The fuzzy membership values are 
then used to predict the class label of the new data point. 

c) Fuzzy Min-Max (FMM) [27]: One of the major 
properties of this algorithm is that most of the 
processing is related to the detection and fine-tuning of 
the boundaries of the classes. In FMM, there are mainly 3 
processes: expansion process, overlap test, and 

contraction process. FMM is a hyperbox classifier, which 
means that it divides the input space into a set of hyper 
boxes [28], each of which represents a different class. 
During training, FMM learns to create hyperboxes that 
enclose the data points of each class. For each new data 
point, FMM determines which hyper box it falls into and 
predicts the class label accordingly. FMM has several 
advantages over other classification algorithms. First, it 
is very fast and efficient, even for large datasets. Second, 
it is able to handle noisy and incomplete data. Third, it 
can be used to classify data with overlapping classes.  
 

4. Results and Discussions 
4.1 Experiment Design 

The experiments are conducted using a PC with an 
NVDIA RTX 4000 GPU, Intel(R) Xeon(R) W-2245 
CPU@3.90GHz, and 64GB System RAM with Python 
programming language via the Google Colab platform.  

To verify the effectiveness of the proposed 
methodology on the datasets, Precision (defined by Eq. 
1), Recall (defined by Eq. 2), and F1- Score (defined by 
Eq. 3) are used. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =   
𝑁𝑇𝑃

𝑁𝑇𝑃 + 𝑁𝐹𝑃
 ,                                          (1) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =    
𝑁𝑇𝑃

𝑁𝑇𝑃 + 𝑁𝐹𝑁
 ,                                                (2) 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
                  (3) 

 
where 𝑁𝑇𝑃 is the number of true positives, which is 
recognized as mitotic cells and is actually the number of 
mitotic cells; 𝑁𝐹𝑃 is the number of false positives, which 
is actually the number of nonmitotic cells among 
detected mitotic cells; and 𝑁𝐹𝑁 is the number of false 
negatives, which is recognized as non-mitosis and is 
actually the number of mitotic cells. 

 
4. 2. Experiment Results 

The experimental results are presented in Table 1 
terms of precision, recall, and F1-score. According to the 
results, YOLOv8 generally outperforms the other 
algorithms in terms of precision, on both the ICPR12 and 
ICPR14 datasets. YOLOv8+FMM and YOLOv8+FKNN also 
perform well, especially on the ICPR14 dataset. The 
FKNN and FRF can help to improve the precision of 
YOLOv8 by reducing the number of false positives which 
is important for improving precision. The Mask R-CNN & 
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UNet++ algorithms are designed to detect both objects 
and their masks. This may introduce some trade-offs in 
terms of precision, as the algorithms may be more likely 
to detect false positives when trying to segment complex 
objects. The performance of all of the algorithms is 

generally lower on the ICPR14 dataset than on the 
ICPR12 dataset. This suggests that the ICPR14 dataset is 
more challenging, possibly due to the presence of more 
occlusion, noise, and method of annotation.  
 

 
Table 1. Implementation Results 

 

Method ICPR12 ICPR14 
 Precision Recall F1-Score Precision Recall F1-Score 
YOLOv5 0.843 0.76 0.801 0.818 0.757 0.79 
YOLOv5 + FMM 0.78 0.747 0.763 0.822 0.684 0.750 
YOLOv5 + FKNN 0.87 0.763 0.816 0.865 0.752 0.805 
YOLOv5 + FRF 0.89 0.873 0.881 0.895 0.848 0.873 
Mask R-CNN & UNet++ 0.72 0.812 0.766 0.67 0.784 0.727 
(Mask R-CNN & UNet++) + FMM 0.677 0.85 0.763 0.682 0.72 0.701 
(Mask R-CNN& UNet++) + FKNN 0.747 0.832 0.789 0.688 0.746 0.717 
(Mask R-CNN& UNet++) + FRF 0.78 0.886 0.833 0.703 0.788 0.745 
YOLOv8 0.863 0.80 0.831 0.83 0.784 0.807 
YOLOv8 + FMM 0.83 0.823 0.826 0.829 0.783 0.806 
YOLOv8 + FKNN 0.88 0.87 0.875 0.85 0.828 0.839 
YOLOv8 + FRF 0.932 0.894 0.913 0.887 0.869 0.878 

 In general, the YOLOv5 and YOLOv8 have higher 
recall than the Mask R-CNN & UNet++ models. This is due 
to the fact that YOLO models are designed for speed and 
efficiency. The addition of the FMM, FKNN, and FRF to 
the YOLOv5 and YOLOv8 models generally leads to 
improved recall, but there are some exceptions. For 
example, the YOLOv5 + FMM model has a lower recall 
than the YOLOv5 model on the ICPR12 dataset. This 
suggests that the FMM may not be as beneficial for all 
datasets. The YOLOv5 and YOLOv8 models are both one-
stage object detectors, which means that they can predict 
both the bounding boxes and class labels of objects in a 
single step. This makes them faster and more efficient 
than two-stage object detectors, such as Mask R-CNN & 
UNet++, which require two steps to predict bounding 
boxes and class labels. 
 The YOLOv8 + FRF has achieved the best 
performance on both datasets in terms of F1-score. The 
FKNN and FRF provide a significant improvement in 
performance for both YOLO variants and Mask R-CNN 
and UNet++ methods. YOLOv8 is a single-stage method 
that is based on the YOLOv3 architecture. FKNN is a 
technique that uses a fast kernel nearest neighbor 
algorithm to improve the localization of bounding boxes. 
FRF is a technique that uses a fast region filtering 
algorithm to remove false positives. Overall, the 
behavior of the data is consistent with what would be 
expected from object detection. In summary, the YOLOv8 

+ FRF method is the best-performing method on both 
ICPR12 and ICPR14. 
                                          

5. Conclusion 
The mitosis detection and classification process is 

a crucial task in cancer staging and grading. The task is 
challenging since the shapes of nuclei and mitosis are 
very similar, and during the detection process, some of 
the nuclei are recognized as mitosis. Due to this 
challenge, the performance of mitosis detection and 
classification and thereby the reliability of analyzing the 
grade and stage of cancer are adversely affected. This can 
lead to improved patient outcomes, as patients with 
more aggressive cancers can be identified earlier.  

In this paper, we proposed a mitosis detection 
methodology. In the proposed methodology, mitotic cells 
are first detected using YOLOv5, YOLOV8, and Mask R-
CNN object detection algorithms. For mitosis 
classification, Fuzzy K Nearest Neighbor, Fuzzy Min-Max, 
and Fuzzy Random Forest were used. The results 
showed that the proposed methodology significantly 
improves the accuracy of mitosis detection and 
classification.  

In the future work, the proposed methodology will 
be implemented and evaluated on new datasets. 
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