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Abstract - To tackle the geographic drawbacks of pumped 
storage hydropower (PSH) plants, they often employ the use of 
closed-loop reservoirs. This reservoir setup always experiences 
changes in its net head while operating. The conventional 
proportional, integral, and derivative (PID) controller of its 
governor is optimized to handle a fixed system and is unable to 
handle the changing system dynamics due to the change in the 
net head of the turbine. Current approaches to tackle this 
include tuning and retuning the PID parameters or employing 
adaptive control strategies. This paper proposes the use of 
reinforcement learning (RL) approaches such as deep 
deterministic policy gradient (DDPG) to train an agent in place 
of the PID controller in the governor of a Pumped Storage 
Hydropower plant. The DDPG agent observes the state of the net 
available head and the deviation from reference speed to 
successfully track the optimal reference for the turbine by 
controlling the turbine's gate through the servomotor. The 
trained agent was able to achieve similar control capability as 
the PID controller but with the advantage of eliminating the 
need for tuning and returning parameters as in the PID 
controller as the system dynamics change. 

Keywords: Reinforcement learning, Deep deterministic 
policy gradient, Pumped storage hydropower, Governor, 
PID controller. 

© Copyright 2023 Authors - This is an Open Access article 
published under the Creative Commons Attribution 
License terms (http://creativecommons.org/licenses/by/3.0). 
Unrestricted use, distribution, and reproduction in any medium 
are permitted, provided the original work is properly cited. 

Date Received: 2023-08-22 

Date Revised: 2023-09-26 

Date Accepted: 2023-10-04 

Date Published: 2023-10-16 

1. Introduction
The governor of the PSH plants has the primary 

function of controlling the rotational speed of the turbine 
by adjusting the turbine’s gate to regulate the water flow 
through it. The proportional, integral, and derivative 
(PID) controllers have been widely known and utilized in 
many industrial control processes because of their 
simplicity and maturity, therefore adopted mostly in PSH 
governors [1]. Notwithstanding their popularity, PID 
controllers have constraints such as their restriction to 
only single-input single-output (SISO) applications and 
their inability to optimally control complex systems that 
change over time, therefore requiring their parameters 
to be tuned and retuned as the system changes [1], [2]. 

In some cases, the PID controller tuning methods 
used do not always yield the optimal parameters, in turn, 
leading to a decrease in the efficiency of the system [3].  
To help address this concern, several control 
approaches, such as adaptive control and intelligent 
systems such as Fuzzy Logic and Artificial Neural 
Networks have been proposed and studied in several 
research papers. 

Reinforcement learning (RL) involves an agent 
training its policy to optimally map a given state to an 
action to maximize the total accumulated reward. 
Recently, by combining it with deep neural networks to 
approximate its action-value function, it has been used to 
solve complex tasks with high dimensions such as in 
robotics, and also to achieve human-level performance 
on many Atari games [4], [5]. These evolutions bring new 
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ideas on how to control complex control tasks due to 
their powerful flexibility in changing and uncertain 
environments [6]. 

The use of RL algorithms has been proposed in 
some power system sectors. In [7], a DDPG agent was 
employed to update the controller parameters in the 
adaptive control of the static synchronous compensator 
with additional damping controller (STATCOM-ADC). In 
[8], deep Q networks (DQN) was adopted to optimally 
self-tune the parameters of a hydro-governor PID 
controller to achieve better performance in preventing 
ultra-low frequency oscillation. Unlike in [7] and [8], 
Huang et al. in [6] achieved an improvement of 21.8% in 
cumulative bus voltage deviation per month by 
employing a deep deterministic policy gradient (DDPG) 
agent to control the active and reactive power of a PSH 
on a pumped storage hydro-wind-solar system. 

Unlike in [8], where DQN was employed to tune the 
parameters of the hydro-governor PID controller, this 
work proposes to utilize a DDPG-based agent in place of 
the PID controller to control the gate of the turbine as its 
dynamics change due to the change in head. The DDPG 
was employed because of its ability to handle a high-
dimensional continuous state-action space. 

The rest of this paper is arranged as follows. 
Section 2 presents the system setup. Section 3 presents 
the proposed DDPG-based agent and the modeling of the 
hydraulic system. Finally, sections 4 and 5 respectively 
present simulation results, and draws conclusions. 

 

2. System Setup 
For this study, an adjustable speed pumped 

storage hydropower (AS-PSH) that utilizes a doubly-fed 
induction machine (DFIM) is adopted. Figure 1 shows 
the generic block diagram of components in a PSH plant 
setup and its control. The PID governor regulates the 
turbine speed by controlling the gate G of the turbine 
through the servomotor. The reference speed tracked by 

the PID governor is obtained from a look-up table (LUT) 
using the net head and reference power. 

Figure 2 shows the proposed system setup for this 
work, with the PID governor replaced with a DDPG-
based Agent. The inputs to the agent are the available net 
head, Hnet a vector of the previous controller output, C, 
and a vector of the error, its derivative, its integral, and 
their previous values, E.  

  

3. System Component Modeling and Control 
Dynamic models of the above components were 

designed using MATLAB/SIMULINK. As our focus is not 
on the machine side of this setup, the equivalent circuit 
model of the DFIM used is not shown here. But can be 
found in [9], [10]. 

 
3. 1. Hydraulic System Modeling 

The modeling of the penstock and turbine was 
done by assuming that we have a rigid conduit and an 
incompressible fluid. The mechanical power, 𝑃𝑚 
generated by the turbine is then given as a function of  
the turbine power coefficient, 𝐴𝑡, the head at the turbines 
admission, ℎ, the flow, 𝑞, the no-load flow, 𝑞𝑛𝑙, the 
damping coefficient, 𝐷, the gate, 𝐺, and the deviation in 
speed, ∆𝜔, as shown in Eq. 1. 
 

𝑃𝑚 = 𝐴𝑡ℎ(𝑞 − 𝑞𝑛𝑙) − 𝐷𝐺∆𝜔 (1) 
 

The rate of change of flow in the conduit and the 
head at the turbine's admission are respectively 
presented in Eq. 2 and Eq. 3: 

 
𝑑𝑞

𝑑𝑡
=

𝐻𝑝 − ℎ − ℎ𝑙

𝑇𝑤
 

(2) 

ℎ = (
𝑞

𝐺
)

2

 (3) 

 
Figure 1. Generic system setup for AS-PSH with PID governor. 
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Where 𝐻𝑝 represents the head at the penstock 

entrance, ℎ𝑙 represents the head loss, and 𝑇𝑤 represents 
the water time constant. 

 
3. 2. Servomotor Modelling 

The servomotor was modeled as a first-order 
system as shown in Figure 3, with a gain, 𝐾𝑎  and time 
constant, 𝑇𝑎. A min and max limit were applied to its 
output for both the gate opening and gate speed. 

3. 3. Proposed Deep Deterministic Policy Gradient 
(DDPG)-based Agent for the Governor 

The standard RL setup as shown in Figure 4 
consists of an agent that receives an observation 𝑥𝑡 from 
an environment 𝐸, takes an action 𝑎𝑡 defined by its 
policy, receives a scalar reward 𝑟𝑡, and updates its policy 

according to the RL algorithm adopted. To apply RL to a 
problem, it must be established as a Markov decision 
process (MDP) which assumes that the next state is only 
dependent on the current state and action [11]. 
The MDP is a 4-tuple 〈𝑆, 𝐴, 𝑃, 𝑅〉. 

•    𝑆 is the set of states of the environment. For this 
study, it is the available net head, the previous controller 
output, and the deviation of the rotor speed from the 
reference speed, its derivative and integral, and their 

previous values. 
•  𝐴 is the set of actions. For this study, it is the 

control signal to be sent to the servomotor that opens 
and closes the gate. 

DDPG 

Agent
Servo-motor Turbine DFIM  LUT

 Hnet

Pref

ωref

ωrotor

G Pm

-
+

C

E

 
Figure 2. Proposed system setup for AS-PSH with DDPG. 

 
Figure 3. Gate servomotor. 

 
Figure 4. General RL setup. 
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• 𝑃 is the probability 𝑃(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡) of the current 
state, 𝑠𝑡, transitioning to the next state, 𝑠𝑡+1, by executing 
the action 𝑎𝑡. 

• 𝑅 is the immediate reward 𝑟(𝑠𝑡, 𝑎𝑡) returned by 
the environment after executing the action, 𝑎𝑡, and 
transitioning from 𝑠𝑡 to 𝑠𝑡+1. As a speed-tracking 
problem, this work utilizes the objective function 
presented in Eq. 4 as its reward function, where 𝑒 is the 
deviation of the rotor speed from the reference speed. 
 

𝐽 = 0.04𝑃 − 0.1(𝑡 ∙ 𝑒2) 
(4) 

𝑃 = {
1 𝑖𝑓 |𝑒| ≤ 0.02
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
 

In general, the goal of an MDP is to find a policy 𝜋 
that will maximize a cumulative function of the expected 
rewards from the kick-off state [12]. In RL, such a 
function is called the Q-value function shown below in 
Eq. 5, which describes the expected reward for taking 
action 𝑎𝑡 in state 𝑠𝑡 and following policy π afterward: 

 
𝑄𝜋(𝑠𝑡, 𝑎𝑡) = 𝐸𝜋[𝑅𝑡|𝑠𝑡, 𝑎𝑡] (5) 

 
where 𝑅𝑡 is the sum of discounted future rewards with a 
discount factor 𝛾 ∈ [0,1], 
 

𝑅𝑡 = ∑ 𝛾(𝑖−𝑡)
∞

𝑖=𝑡
𝑟(𝑠𝑖, 𝑎𝑖) (6) 

 
We transform (5) into the Bellman expectation equation 
as shown in Eq. 7, which relates the value of a state to the 
expected value of its successor states. 

 

𝑄𝜋(𝑠𝑡, 𝑎𝑡) = 𝐸𝜋 [𝑟(𝑠𝑡, 𝑎𝑡)

+ 𝛾𝐸𝑎𝑡+1
[𝑄𝜋(𝑠𝑡+1, 𝑎𝑡+1)]] 

(7) 

 
The DDPG as shown in Figure 5 utilizes an actor-

critic architecture represented by deep neural networks 
to solve the MDP and learn the optimal policy, 𝜋. The 
critic network, 𝑄, with parameters, 𝜃𝑄, takes state-action 
pairs (𝑠𝑡, 𝑎𝑡) as input to approximate the current Q-value 
function 𝑄(𝑠𝑡, 𝑎𝑡|𝜃𝑄). According to [13], its accuracy is 
improved by updating its parameters 𝜃𝑄 to minimize the 
loss function shown in Eq. 8: 
 

𝐿(𝜃𝑄) = 𝐸𝑄′ [(𝑦𝑡 − 𝑄(𝑠𝑡, 𝑎𝑡|𝜃𝑄))
2

] (8) 

 
where 
 

𝑦𝑡 = 𝑟(𝑠𝑡, 𝑎𝑡) + 𝛾𝑄(𝑠𝑡+1, 𝜇(𝑠𝑡+1)|𝜃𝑄) (9) 
 
For the actor network μ, it takes the state 𝑠𝑡 as input and 
approximates the policy, π, for selecting the current 
action, 𝑎𝑡, which interacts with the environment to 
generate the next state and reward value. According to 
[14], to ensure that the actor network produces actions 
that maximize the estimated Q value, its parameters, 𝜃𝜇, 
are updated by the policy gradient theorem shown in Eq. 
10. 
 

∇𝜃𝜇𝐽(𝜃𝜇)
= ∇𝑎𝑄(𝑠, 𝑎|𝜃𝑄)||𝑠=𝑠𝑡,𝑎=𝜇(𝑠𝑡)∇𝜃𝜇(𝑠|𝜃𝜇)||𝑠=𝑠𝑡

 (10) 

Policy 

Gradient

Environment

Loss 

Function

update
update

Q(s,a)

Action, a

States, s

reward, r

Actor

Critic

 
Figure 5. DDPG schematic. 
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A second set of the actor-critic network is 
employed by the DDPG algorithm to make the training 
process stable [15]. This second set of the actor-critic 

network is called the target with parameters, 𝜃𝜇′
 and 𝜃𝑄′

 
for its actor network and critic network, respectively. 
These parameters are close to that of the main actor-
critic network but with a time delay. They are updated 
by a soft update process as shown below in Eq. 11: 
 

{
𝜃𝑄′

← 𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄′

𝜃𝜇′
← 𝜏𝜃𝜇 + (1 − 𝜏)𝜃𝜇′  (11) 

 
An experience replay buffer 𝐷 = (𝑒1, 𝑒2, … , 𝑒𝑀) of 𝑀 −
𝑠𝑖𝑧𝑒 is used to store experience, 𝑒 = (𝑠𝑡, 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) , for 
each step. This is similar to the human brain storing 
memory in registers. New experiences overwrite older 
ones when the buffer capacity is reached. Only 𝑁 − 𝑠𝑖𝑧𝑒 
mini-batch of experience is selected from 𝐷 for the 
gradient calculation and network parameter update. 
Therefore, (8) can be adjusted to 
 

𝐿(𝜃𝑄) =
1

𝑁
∑[𝑦𝑖 − 𝑄(𝑠𝑖, 𝑎𝑖|𝜃𝑄)]2

𝑁

𝑖=1

 (12) 

𝑦𝑖 = 𝑟𝑖 + 𝛾𝑄′(𝑠𝑖+1, 𝜇′(𝑠𝑡+1|𝜃𝜇′
)|𝜃𝑄′

) 
(13) 

where 𝑦𝑖  is the Q-value obtained from the sum of the 
current reward and the discounted future reward 
calculated by the target critic network. The main critic 
network is now updated as shown in Eq. 14, 
 

𝜃𝑡+1
𝑄 = 𝜃𝑡

𝑄 + 𝛼𝑄 ∙ ∇𝜃𝜇𝐿(𝜃𝑡
𝑄

) (14) 

 
where, 𝛼𝑄 is the learning rate for the critic network. 
From (12) and (10), we can update the main actor 
network as shown below: 
 

∇𝜃𝜇𝐽(𝜃𝜇)

=
1

𝑁
∑[∇𝛼𝑄(𝑠, 𝑎|𝜃𝑄)|𝑠=𝑠𝑖,𝑎=𝜇(𝑠𝑖)∇𝜃𝜇𝜇(𝑠|𝜃𝜇)|𝑠=𝑠𝑖

]

𝑁

𝑖=1

 (15) 

𝜃𝑡+1
𝜇

= 𝜃𝑡
𝜇

+ 𝛼𝜇 ∙ ∇𝜃𝜇𝐽(𝜃𝑡
𝜇

) 
(16) 

3. 4. Training Process for the Agent 
The algorithm used to implement the DDPG agent 

for the PSH governor controller is shown in Table 1. 

Table 1. DDPG algorithm for the PSH governor controller. 

Input: The available net head, the previous controller outputs, and the rotor speed 
deviation from the reference speed, its derivative and integral, and their previous 
values. 
Output: The control signal [0.01,0.98]  sent to the servomotor. 

1.  Randomly initialize the critic and actor network parameters 
2.  Initialize the target network parameters with the parameters of the main actor and       
critic network 

3.  Initialize the experience buffer D  
4.  for episode = 1 to max episode 
5.       Initialize a random noise   for action exploration 

6.       Initialize the states of the test setup 

7.       Receive initial state observation 1s  

8.       for t = 1 to stop time 
9.             With the current actor network, select an action with noise 

( | )t t ta s      

10.           Obtain a reward tr  and the new state 1ts   

11.           Store transition 1( , , , )t t t ts a r s   in D  

12.           Randomly select from D  a mini-batch of  transitions 
13.           Update the respective networks according to (16), (14), and (11) 
14.      end for 
15. end for 
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As a temporal dynamic system, the data from the 
ASPSH model is sequential and requires the use of a 
recurrent neural network (RNN) to better capture its 
dynamics. Since the use of RNNs appeared to be 
computationally intensive for this project, a feed-
forward neural network (FFNN) is used instead. To 
account for the temporal dynamics of the system, limited 
past information of the controller output, the deviation 
of the rotor speed from the reference speed, its 
derivative, and its integral were also included as input to 
the network. 

To train the agent, MATLAB and SIMULINK were 
utilized to execute the above algorithm and also to set up 
the ASPSH model discussed above as the environment. 

The training was done for 1000 episodes. For each 
episode, the environment is run for 100 seconds, and the 
net available head is issued randomly and maintained 
throughout the episode, while a random optimal speed 
reference is issued at a random time in the episode. The 
hyperparameters utilized for training are shown in Table 
2. 

 

4. Results and Discussion 
To test the performance of our trained agent as the 

governor for the ASPSH unit, it was tested for various 
step changes in power reference at various available net 
head in the reservoir. Its performance was in turn 
compared to that of a particle swarm optimized (PSO) 

Table 2. Hyperparameters of the DDPG. 

Hyperparameters Values Hyperparameters Values 
Experience buffer length 10000 Number of steps in an episode 100 
Mini-batch size 50 Sampling time (s) 1 
Discount factor 1 Simulation time per episode (s) 100 
Actor learning rate 0.0001 Maximum episode 1000 
Critic learning rate 0.001 Gradient threshold 1 

 

 
Figure 6. Comparison of the DDPG and PID governor speed tracking capability for various step responses at various 

available net head. 
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PID governor for the same operating condition as shown 
in Figure 6. For an available net head of 1.00 and 0.98 p.u, 
a power reference of [0.70 0.74 0.80 0.70] p.u was 
applied to the system at times [0 120 240 360]s. While, 
for an available net head of 0.93 and 0.90 p.u, a power 
reference of [0.62 0.70 0.60 0.65] p.u was applied to the 
system at times [0 120 240 360]s. The speed references 
obtained from the LUT are [1.0286 1.0514 1.0857 
1.0286] p.u, [1.0250 1.0504 1.0800 1.0280] p.u, [0.9828 
1.0286 0.9714 1.0000] p.u, and [0.9828 1.0280 0.9692 
1.0000] p.u respectively. From the comparison of the 
control performance of the DDPG and PID governor 
presented in Figure 6, the proposed DDPG governor in 
most cases achieved lesser maximum overshoot and 
settling time when compared to the PID governor. 
Because the DFIM of the AS-PSH has its converter control 
highly involved in controlling the electrical power output 
of the unit, the focus of this work was on demonstrating 
the ability of the trained agent to have the turbine follow 
and track the optimal speed reference required to 
generate the required electrical power output. 

The primary frequency control (PFC) capability of 
the designed DDPG governor was tested and compared 
with the PID governor on the IEEE 9-bus system. To 
simulate a disturbance in the system, a 5% and 10% load 
change was implemented at bus 5 at t = 10s as shown in 
Figure 7. For the 5% increase in the load at bus 5, the 
frequency response of both governors was identical, but 
as the load at bus 5 was increased by 10%, the DDPG 
governor exhibited a faster response at the inertia 
response region compared to the PID governor. Also, a 

fixed-frequency droop control approach was employed 
to react to the disturbance. 
 

5. Conclusion 
This paper demonstrated a step-by-step approach 

to using reinforcement learning techniques to design a 
DDPG-based governor for the turbine of an ASPSH. The 
FFNN employed by the actor was able to achieve an 
optimal policy capable of controlling the gate of the 
turbine while accounting for the changing system 
dynamics. The DDPG agent demonstrated an excellent 
tracking capability like the PSO-PID, but in some cases, it 
was able to reach a steady state faster than the PSO-PID 
with lesser overshoot. This slight improvement in the 
settling time contributed to a slightly faster response in 
the primary frequency control with the DDPG agent as 
the magnitude of the grid disturbance increased. 

The primary advantage of the proposed DDPG-
based governor is that, unlike the conventional PID 
controller, it eliminates the need for tuning and retuning 
the controller parameters as system dynamics change. 
Since the DDPG agent is trained with measured data from 
the system, it can be updated over time to account for the 
decrease in the system efficiency that is related to aging. 

 The DDPG-based governor in this research was 
done with a single penstock PSH plant, future work could 
be to consider a PSH unit with multiple penstocks as well 
as accounting for the water level in the surge tanks as it 
is another component that contributes to the complexity 
of the turbine regulation. 
 

 
Figure 7. Comparison of the PFC capability of the DDPG and PID governors on the IEEE 9-bus system. 
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