
Avestia Publishing

Journal of Machine Intelligence and Data Science (JMIDS)

Volume 4, Year 2023

ISSN: 2564-3282

DOI: 10.11159/jmids.2023.004

27

Speed Control of an Adjustable Speed Pumped
Storage Hydropower Plant with a Deep

Reinforcement Learning-Based Governor

Innocent Enyekwe1, Wenlei Bai1, Kwang Y. Lee1, Soumyadeep Nag2
1Baylor University, Department of Electrical and Computer Engineering

Waco, Texas, USA
innocent_enyekwe1@baylor.edu; wenlei_bai@baylor.edu; kwang_y_lee@baylor.edu

2University of Central Florida, Department of Something
Orlando, Florida, USA

soumyadeep.nag@ucf.edu

Abstract - To tackle the geographic drawbacks of pumped
storage hydropower (PSH) plants, they often employ the use of
closed-loop reservoirs. This reservoir setup always experiences
changes in its net head while operating. The conventional
proportional, integral, and derivative (PID) controller of its
governor is optimized to handle a fixed system and is unable to
handle the changing system dynamics due to the change in the
net head of the turbine. Current approaches to tackle this
include tuning and retuning the PID parameters or employing
adaptive control strategies. This paper proposes the use of
reinforcement learning (RL) approaches such as deep
deterministic policy gradient (DDPG) to train an agent in place
of the PID controller in the governor of a Pumped Storage
Hydropower plant. The DDPG agent observes the state of the net
available head and the deviation from reference speed to
successfully track the optimal reference for the turbine by
controlling the turbine's gate through the servomotor. The
trained agent was able to achieve similar control capability as
the PID controller but with the advantage of eliminating the
need for tuning and returning parameters as in the PID
controller as the system dynamics change.

Keywords: Reinforcement learning, Deep deterministic
policy gradient, Pumped storage hydropower, Governor,
PID controller.

© Copyright 2023 Authors - This is an Open Access article
published under the Creative Commons Attribution
License terms (http://creativecommons.org/licenses/by/3.0).
Unrestricted use, distribution, and reproduction in any medium
are permitted, provided the original work is properly cited.

Date Received: 2023-08-22

Date Revised: 2023-09-26

Date Accepted: 2023-10-04

Date Published: 2023-10-16

1. Introduction
The governor of the PSH plants has the primary

function of controlling the rotational speed of the turbine
by adjusting the turbine’s gate to regulate the water flow
through it. The proportional, integral, and derivative
(PID) controllers have been widely known and utilized in
many industrial control processes because of their
simplicity and maturity, therefore adopted mostly in PSH
governors [1]. Notwithstanding their popularity, PID
controllers have constraints such as their restriction to
only single-input single-output (SISO) applications and
their inability to optimally control complex systems that
change over time, therefore requiring their parameters
to be tuned and retuned as the system changes [1], [2].

In some cases, the PID controller tuning methods
used do not always yield the optimal parameters, in turn,
leading to a decrease in the efficiency of the system [3].
To help address this concern, several control
approaches, such as adaptive control and intelligent
systems such as Fuzzy Logic and Artificial Neural
Networks have been proposed and studied in several
research papers.

Reinforcement learning (RL) involves an agent
training its policy to optimally map a given state to an
action to maximize the total accumulated reward.
Recently, by combining it with deep neural networks to
approximate its action-value function, it has been used to
solve complex tasks with high dimensions such as in
robotics, and also to achieve human-level performance
on many Atari games [4], [5]. These evolutions bring new

 28

ideas on how to control complex control tasks due to
their powerful flexibility in changing and uncertain
environments [6].

The use of RL algorithms has been proposed in
some power system sectors. In [7], a DDPG agent was
employed to update the controller parameters in the
adaptive control of the static synchronous compensator
with additional damping controller (STATCOM-ADC). In
[8], deep Q networks (DQN) was adopted to optimally
self-tune the parameters of a hydro-governor PID
controller to achieve better performance in preventing
ultra-low frequency oscillation. Unlike in [7] and [8],
Huang et al. in [6] achieved an improvement of 21.8% in
cumulative bus voltage deviation per month by
employing a deep deterministic policy gradient (DDPG)
agent to control the active and reactive power of a PSH
on a pumped storage hydro-wind-solar system.

Unlike in [8], where DQN was employed to tune the
parameters of the hydro-governor PID controller, this
work proposes to utilize a DDPG-based agent in place of
the PID controller to control the gate of the turbine as its
dynamics change due to the change in head. The DDPG
was employed because of its ability to handle a high-
dimensional continuous state-action space.

The rest of this paper is arranged as follows.
Section 2 presents the system setup. Section 3 presents
the proposed DDPG-based agent and the modeling of the
hydraulic system. Finally, sections 4 and 5 respectively
present simulation results, and draws conclusions.

2. System Setup
For this study, an adjustable speed pumped

storage hydropower (AS-PSH) that utilizes a doubly-fed
induction machine (DFIM) is adopted. Figure 1 shows
the generic block diagram of components in a PSH plant
setup and its control. The PID governor regulates the
turbine speed by controlling the gate G of the turbine
through the servomotor. The reference speed tracked by

the PID governor is obtained from a look-up table (LUT)
using the net head and reference power.

Figure 2 shows the proposed system setup for this
work, with the PID governor replaced with a DDPG-
based Agent. The inputs to the agent are the available net
head, Hnet a vector of the previous controller output, C,
and a vector of the error, its derivative, its integral, and
their previous values, E.

3. System Component Modeling and Control
Dynamic models of the above components were

designed using MATLAB/SIMULINK. As our focus is not
on the machine side of this setup, the equivalent circuit
model of the DFIM used is not shown here. But can be
found in [9], [10].

3. 1. Hydraulic System Modeling

The modeling of the penstock and turbine was
done by assuming that we have a rigid conduit and an
incompressible fluid. The mechanical power, 𝑃𝑚
generated by the turbine is then given as a function of
the turbine power coefficient, 𝐴𝑡, the head at the turbines
admission, ℎ, the flow, 𝑞, the no-load flow, 𝑞𝑛𝑙, the
damping coefficient, 𝐷, the gate, 𝐺, and the deviation in
speed, ∆𝜔, as shown in Eq. 1.

𝑃𝑚 = 𝐴𝑡ℎ(𝑞 − 𝑞𝑛𝑙) − 𝐷𝐺∆𝜔 (1)

The rate of change of flow in the conduit and the
head at the turbine's admission are respectively
presented in Eq. 2 and Eq. 3:

𝑑𝑞

𝑑𝑡
=

𝐻𝑝 − ℎ − ℎ𝑙

𝑇𝑤

(2)

ℎ = (
𝑞

𝐺
)

2

 (3)

Figure 1. Generic system setup for AS-PSH with PID governor.

 29

Where 𝐻𝑝 represents the head at the penstock

entrance, ℎ𝑙 represents the head loss, and 𝑇𝑤 represents
the water time constant.

3. 2. Servomotor Modelling

The servomotor was modeled as a first-order
system as shown in Figure 3, with a gain, 𝐾𝑎 and time
constant, 𝑇𝑎. A min and max limit were applied to its
output for both the gate opening and gate speed.

3. 3. Proposed Deep Deterministic Policy Gradient
(DDPG)-based Agent for the Governor

The standard RL setup as shown in Figure 4
consists of an agent that receives an observation 𝑥𝑡 from
an environment 𝐸, takes an action 𝑎𝑡 defined by its
policy, receives a scalar reward 𝑟𝑡, and updates its policy

according to the RL algorithm adopted. To apply RL to a
problem, it must be established as a Markov decision
process (MDP) which assumes that the next state is only
dependent on the current state and action [11].
The MDP is a 4-tuple 〈𝑆, 𝐴, 𝑃, 𝑅〉.

• 𝑆 is the set of states of the environment. For this
study, it is the available net head, the previous controller
output, and the deviation of the rotor speed from the
reference speed, its derivative and integral, and their

previous values.
• 𝐴 is the set of actions. For this study, it is the

control signal to be sent to the servomotor that opens
and closes the gate.

DDPG

Agent
Servo-motor Turbine DFIM LUT

 Hnet

Pref

ωref

ωrotor

G Pm

-
+

C

E

Figure 2. Proposed system setup for AS-PSH with DDPG.

Figure 3. Gate servomotor.

Figure 4. General RL setup.

 30

• 𝑃 is the probability 𝑃(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡) of the current
state, 𝑠𝑡, transitioning to the next state, 𝑠𝑡+1, by executing
the action 𝑎𝑡.

• 𝑅 is the immediate reward 𝑟(𝑠𝑡, 𝑎𝑡) returned by
the environment after executing the action, 𝑎𝑡, and
transitioning from 𝑠𝑡 to 𝑠𝑡+1. As a speed-tracking
problem, this work utilizes the objective function
presented in Eq. 4 as its reward function, where 𝑒 is the
deviation of the rotor speed from the reference speed.

𝐽 = 0.04𝑃 − 0.1(𝑡 ∙ 𝑒2)
(4)

𝑃 = {
1 𝑖𝑓 |𝑒| ≤ 0.02
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

In general, the goal of an MDP is to find a policy 𝜋
that will maximize a cumulative function of the expected
rewards from the kick-off state [12]. In RL, such a
function is called the Q-value function shown below in
Eq. 5, which describes the expected reward for taking
action 𝑎𝑡 in state 𝑠𝑡 and following policy π afterward:

𝑄𝜋(𝑠𝑡, 𝑎𝑡) = 𝐸𝜋[𝑅𝑡|𝑠𝑡, 𝑎𝑡] (5)

where 𝑅𝑡 is the sum of discounted future rewards with a
discount factor 𝛾 ∈ [0,1],

𝑅𝑡 = ∑ 𝛾(𝑖−𝑡)
∞

𝑖=𝑡
𝑟(𝑠𝑖, 𝑎𝑖) (6)

We transform (5) into the Bellman expectation equation
as shown in Eq. 7, which relates the value of a state to the
expected value of its successor states.

𝑄𝜋(𝑠𝑡, 𝑎𝑡) = 𝐸𝜋 [𝑟(𝑠𝑡, 𝑎𝑡)

+ 𝛾𝐸𝑎𝑡+1
[𝑄𝜋(𝑠𝑡+1, 𝑎𝑡+1)]]

(7)

The DDPG as shown in Figure 5 utilizes an actor-

critic architecture represented by deep neural networks
to solve the MDP and learn the optimal policy, 𝜋. The
critic network, 𝑄, with parameters, 𝜃𝑄, takes state-action
pairs (𝑠𝑡, 𝑎𝑡) as input to approximate the current Q-value
function 𝑄(𝑠𝑡, 𝑎𝑡|𝜃𝑄). According to [13], its accuracy is
improved by updating its parameters 𝜃𝑄 to minimize the
loss function shown in Eq. 8:

𝐿(𝜃𝑄) = 𝐸𝑄′ [(𝑦𝑡 − 𝑄(𝑠𝑡, 𝑎𝑡|𝜃𝑄))
2

] (8)

where

𝑦𝑡 = 𝑟(𝑠𝑡, 𝑎𝑡) + 𝛾𝑄(𝑠𝑡+1, 𝜇(𝑠𝑡+1)|𝜃𝑄) (9)

For the actor network μ, it takes the state 𝑠𝑡 as input and
approximates the policy, π, for selecting the current
action, 𝑎𝑡, which interacts with the environment to
generate the next state and reward value. According to
[14], to ensure that the actor network produces actions
that maximize the estimated Q value, its parameters, 𝜃𝜇,
are updated by the policy gradient theorem shown in Eq.
10.

∇𝜃𝜇𝐽(𝜃𝜇)
= ∇𝑎𝑄(𝑠, 𝑎|𝜃𝑄)||𝑠=𝑠𝑡,𝑎=𝜇(𝑠𝑡)∇𝜃𝜇(𝑠|𝜃𝜇)||𝑠=𝑠𝑡

 (10)

Policy

Gradient

Environment

Loss

Function

update
update

Q(s,a)

Action, a

States, s

reward, r

Actor

Critic

Figure 5. DDPG schematic.

 31

A second set of the actor-critic network is
employed by the DDPG algorithm to make the training
process stable [15]. This second set of the actor-critic

network is called the target with parameters, 𝜃𝜇′
 and 𝜃𝑄′

for its actor network and critic network, respectively.
These parameters are close to that of the main actor-
critic network but with a time delay. They are updated
by a soft update process as shown below in Eq. 11:

{
𝜃𝑄′

← 𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄′

𝜃𝜇′
← 𝜏𝜃𝜇 + (1 − 𝜏)𝜃𝜇′ (11)

An experience replay buffer 𝐷 = (𝑒1, 𝑒2, … , 𝑒𝑀) of 𝑀 −
𝑠𝑖𝑧𝑒 is used to store experience, 𝑒 = (𝑠𝑡, 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) , for
each step. This is similar to the human brain storing
memory in registers. New experiences overwrite older
ones when the buffer capacity is reached. Only 𝑁 − 𝑠𝑖𝑧𝑒
mini-batch of experience is selected from 𝐷 for the
gradient calculation and network parameter update.
Therefore, (8) can be adjusted to

𝐿(𝜃𝑄) =
1

𝑁
∑[𝑦𝑖 − 𝑄(𝑠𝑖, 𝑎𝑖|𝜃𝑄)]2

𝑁

𝑖=1

 (12)

𝑦𝑖 = 𝑟𝑖 + 𝛾𝑄′(𝑠𝑖+1, 𝜇′(𝑠𝑡+1|𝜃𝜇′
)|𝜃𝑄′

)
(13)

where 𝑦𝑖 is the Q-value obtained from the sum of the
current reward and the discounted future reward
calculated by the target critic network. The main critic
network is now updated as shown in Eq. 14,

𝜃𝑡+1
𝑄 = 𝜃𝑡

𝑄 + 𝛼𝑄 ∙ ∇𝜃𝜇𝐿(𝜃𝑡
𝑄

) (14)

where, 𝛼𝑄 is the learning rate for the critic network.
From (12) and (10), we can update the main actor
network as shown below:

∇𝜃𝜇𝐽(𝜃𝜇)

=
1

𝑁
∑[∇𝛼𝑄(𝑠, 𝑎|𝜃𝑄)|𝑠=𝑠𝑖,𝑎=𝜇(𝑠𝑖)∇𝜃𝜇𝜇(𝑠|𝜃𝜇)|𝑠=𝑠𝑖

]

𝑁

𝑖=1

 (15)

𝜃𝑡+1
𝜇

= 𝜃𝑡
𝜇

+ 𝛼𝜇 ∙ ∇𝜃𝜇𝐽(𝜃𝑡
𝜇

)
(16)

3. 4. Training Process for the Agent
The algorithm used to implement the DDPG agent

for the PSH governor controller is shown in Table 1.

Table 1. DDPG algorithm for the PSH governor controller.

Input: The available net head, the previous controller outputs, and the rotor speed
deviation from the reference speed, its derivative and integral, and their previous
values.
Output: The control signal [0.01,0.98] sent to the servomotor.

1. Randomly initialize the critic and actor network parameters
2. Initialize the target network parameters with the parameters of the main actor and
critic network

3. Initialize the experience buffer D
4. for episode = 1 to max episode
5. Initialize a random noise for action exploration

6. Initialize the states of the test setup

7. Receive initial state observation 1s

8. for t = 1 to stop time
9. With the current actor network, select an action with noise

(|)t t ta s

10. Obtain a reward tr and the new state 1ts

11. Store transition 1(, , ,)t t t ts a r s in D

12. Randomly select from D a mini-batch of transitions
13. Update the respective networks according to (16), (14), and (11)
14. end for
15. end for

 32

As a temporal dynamic system, the data from the
ASPSH model is sequential and requires the use of a
recurrent neural network (RNN) to better capture its
dynamics. Since the use of RNNs appeared to be
computationally intensive for this project, a feed-
forward neural network (FFNN) is used instead. To
account for the temporal dynamics of the system, limited
past information of the controller output, the deviation
of the rotor speed from the reference speed, its
derivative, and its integral were also included as input to
the network.

To train the agent, MATLAB and SIMULINK were
utilized to execute the above algorithm and also to set up
the ASPSH model discussed above as the environment.

The training was done for 1000 episodes. For each
episode, the environment is run for 100 seconds, and the
net available head is issued randomly and maintained
throughout the episode, while a random optimal speed
reference is issued at a random time in the episode. The
hyperparameters utilized for training are shown in Table
2.

4. Results and Discussion
To test the performance of our trained agent as the

governor for the ASPSH unit, it was tested for various
step changes in power reference at various available net
head in the reservoir. Its performance was in turn
compared to that of a particle swarm optimized (PSO)

Table 2. Hyperparameters of the DDPG.

Hyperparameters Values Hyperparameters Values
Experience buffer length 10000 Number of steps in an episode 100
Mini-batch size 50 Sampling time (s) 1
Discount factor 1 Simulation time per episode (s) 100
Actor learning rate 0.0001 Maximum episode 1000
Critic learning rate 0.001 Gradient threshold 1

Figure 6. Comparison of the DDPG and PID governor speed tracking capability for various step responses at various

available net head.

 33

PID governor for the same operating condition as shown
in Figure 6. For an available net head of 1.00 and 0.98 p.u,
a power reference of [0.70 0.74 0.80 0.70] p.u was
applied to the system at times [0 120 240 360]s. While,
for an available net head of 0.93 and 0.90 p.u, a power
reference of [0.62 0.70 0.60 0.65] p.u was applied to the
system at times [0 120 240 360]s. The speed references
obtained from the LUT are [1.0286 1.0514 1.0857
1.0286] p.u, [1.0250 1.0504 1.0800 1.0280] p.u, [0.9828
1.0286 0.9714 1.0000] p.u, and [0.9828 1.0280 0.9692
1.0000] p.u respectively. From the comparison of the
control performance of the DDPG and PID governor
presented in Figure 6, the proposed DDPG governor in
most cases achieved lesser maximum overshoot and
settling time when compared to the PID governor.
Because the DFIM of the AS-PSH has its converter control
highly involved in controlling the electrical power output
of the unit, the focus of this work was on demonstrating
the ability of the trained agent to have the turbine follow
and track the optimal speed reference required to
generate the required electrical power output.

The primary frequency control (PFC) capability of
the designed DDPG governor was tested and compared
with the PID governor on the IEEE 9-bus system. To
simulate a disturbance in the system, a 5% and 10% load
change was implemented at bus 5 at t = 10s as shown in
Figure 7. For the 5% increase in the load at bus 5, the
frequency response of both governors was identical, but
as the load at bus 5 was increased by 10%, the DDPG
governor exhibited a faster response at the inertia
response region compared to the PID governor. Also, a

fixed-frequency droop control approach was employed
to react to the disturbance.

5. Conclusion
This paper demonstrated a step-by-step approach

to using reinforcement learning techniques to design a
DDPG-based governor for the turbine of an ASPSH. The
FFNN employed by the actor was able to achieve an
optimal policy capable of controlling the gate of the
turbine while accounting for the changing system
dynamics. The DDPG agent demonstrated an excellent
tracking capability like the PSO-PID, but in some cases, it
was able to reach a steady state faster than the PSO-PID
with lesser overshoot. This slight improvement in the
settling time contributed to a slightly faster response in
the primary frequency control with the DDPG agent as
the magnitude of the grid disturbance increased.

The primary advantage of the proposed DDPG-
based governor is that, unlike the conventional PID
controller, it eliminates the need for tuning and retuning
the controller parameters as system dynamics change.
Since the DDPG agent is trained with measured data from
the system, it can be updated over time to account for the
decrease in the system efficiency that is related to aging.

 The DDPG-based governor in this research was
done with a single penstock PSH plant, future work could
be to consider a PSH unit with multiple penstocks as well
as accounting for the water level in the surge tanks as it
is another component that contributes to the complexity
of the turbine regulation.

Figure 7. Comparison of the PFC capability of the DDPG and PID governors on the IEEE 9-bus system.

 34

References
[1] J. Culberg, M. Negnevitsky, and K. M. Muttaqi,

“Hydro-turbine governor control: theory, techniques

and limitations,” presented at the Australasian

Universities Power Engineering Conference (AUPEC

2006), 2006.

[2] J. Godjevac, “Comparison between PID and fuzzy

control,” 1993.

[3] “The Negative Consequences of Poor PID Controller

Tuning,” Control Automation.

https://bit.ly/3GyVMLe.

[4] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I.

Mordatch, “Multi-Agent Actor-Critic for Mixed

Cooperative-Competitive Environments,” 2017, doi:

10.48550/ARXIV.1706.02275.

[5] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez,

Y. Tassa, D. Silver, and D. Wierstra, “Continuous

control with deep reinforcement learning.” arXiv, Jul.

05, 2019. Accessed: Jan. 01, 2023. [Online].

Available: http://arxiv.org/abs/1509.02971

[6] Q. Huang, W. Hu, G. Zhang, D. Cao, Z. Liu, Q.

Huang, and Z. Chen, “A novel deep reinforcement

learning enabled agent for pumped storage hydro‐

wind‐solar systems voltage control,” IET Renew.

Power Gener., vol. 15, no. 16, pp. 3941–3956, Dec.

2021, doi: 10.1049/rpg2.12311.

[7] G. Zhang, W. Hu, D. Cao, J. Yi, Q. Huang, Z. Liu, Z.

Chen, and F. Blaabjerg, “A data-driven approach for

designing STATCOM additional damping controller

for wind farms,” Int. J. Electr. Power Energy Syst.,

vol. 117, p. 105620, May 2020, doi:

10.1016/j.ijepes.2019.105620.

[8] G. Zhang, W. Hu, D. Cao, S. Jing, Q. Huang, and Z.

Chen, “Deep Reinforcement Learning Based

Optimization Strategy for Hydro-Governor PID

Parameters to Suppress ULFO,” in 2020 5th

International Conference on Power and Renewable

Energy (ICPRE), Shanghai, China, Sep. 2020, pp.

446–450. doi: 10.1109/ICPRE51194.2020.9233119.

[9] S. Nag and K. Y. Lee, “DFIM-Based Variable Speed

Operation of Pump-Turbines for Efficiency

Improvement,” IFAC-Pap., vol. 51, no. 28, Art. no.

28, 2018, doi: 10.1016/j.ifacol.2018.11.788.

[10] G. Abad, Ed., Doubly fed induction machine:

modeling and control for wind energy generation.

Hoboken, NJ: IEEE Press, 2011.

[11] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra,

and M. Riedmiller. "Deterministic policy gradient

algorithms". In Proceedings of the 31st International

Conference on International Conference on Machine

Learning, vol 32 (ICML'14). JMLR.org, I–387–I–

395.

[12] “Markov decision process,” Wikipedia, 22-Dec-2022.

[Online]. Available:

https://en.wikipedia.org/wiki/Markov_decision_proc

ess. [Accessed: 04-Jan-2023].

[13] D. Cao, W. Hu, J. Zhao, G. Zhang, Z. Liu, Z. Chen,

and F. Blaabjerg, Reinforcement learning and its

applications in modern power and energy systems: a

review, Journal of Modern Power Systems and Clean

Energy 8 (6) (2020) 1029e1042.

[14] G. Zhang, W. Hu, D. Cao, Q. Huang, Z. Chen, and F.

Blaabjerg, “A novel deep reinforcement learning

enabled sparsity promoting adaptive control method

to improve the stability of power systems with wind

energy penetration,” Renewable Energy, vol. 178, pp.

363–376, 2021.

[15] “Deep deterministic policy gradient,” Deep

Deterministic Policy Gradient - Spinning Up

documentation. [Online]. Available:

https://spinningup.openai.com/en/latest/algorithms/d

dpg.html. [Accessed: 04-Jan-2023].

