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Abstract - A moment-based approximation methodology for 
estimating a copula density from bivariate observations is 
introduced. The resulting simple representation of the copula 
density is suitable for reporting purpose or carrying out further 
algebraic manipulation. Empirical copula density functions will 
also be determined from kernel density estimates. A technique 
for obtaining a joint density from marginal density estimates 
and a copula density is proposed as well. The Bernstein copula 
density approximants will be utilized for comparison purposes. 
The results are applied to two stocks’ closing prices and a stock’s 
price and its running maximum. In the latter case, the model is 
related to a Brownian motion process. 
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1. Introduction 
Copulas are principally utilized for modelling 

dependencies in multivariate distributions. Their 
properties have been increasingly exploited in 
numerous types of scientific investigations; for instance, 
the reader may refer to Chao et al. [1], Carrera et al. [2] 
and Chen et al. [3] for recent advances in the area of 
artificial intelligence. The key idea behind copulas is that 
the joint distribution of two or more variables can be 
represented in terms of their marginal distributions and 
a specific correlation structure. As a measure of 

dependence, they have for instance found applications in 
reliability theory, signal processing, geodesy, hydrology 
and medicine. Results involving empirical bivariate 
copula densities are discussed in this paper. 

Let 𝐹(𝑥1, 𝑥2)  be the joint cumulative distribution 
function of random variables 𝑋1  and  𝑋2  having 
continuous marginal distribution functions 𝐹1(𝑥1)  and 
𝐹2(𝑥2) . According to Sklar [4], there exists a unique 
bivariate copula 𝐶: 𝐼2 ↦ 𝐼 (the unit interval) such that  

 
𝐹(𝑥1,  𝑥2) = 𝐶(𝐹1(𝑥1), 𝐹2(𝑥2)),                     (1) 

 
where 𝐶(⋅,⋅) is a joint cumulative distribution function 
having uniform marginals. Conversely, for any 
continuous cumulative distribution function 𝐹1(𝑥1) and 
𝐹2(𝑥2)  and any copula 𝐶 , the function 𝐹  defined in 
Equation (1) is a joint distribution function with 
marginal distributions 𝐹1 and 𝐹2. 

Sklar's theorem provides a technique for 
constructing copulas. Indeed, the function 

 

𝐶(𝑢1, 𝑢2) = 𝐹 (𝐹1
−1(𝑢1), 𝐹2

−1(𝑢2))                 (2) 

 
is a bivariate copula, where the quasi-inverse 𝐹𝑖

−1 for 𝑖 =
1, 2 is defined by 

 
𝐹𝑖

−1(𝑢) =  inf{𝑥|𝐹𝑖(𝑥) ≥ 𝑢}  ∀𝑢 ∈ (0,1).         (3)  
 
We shall denote the probability density function 
corresponding to the copula 𝐶(𝑢1, 𝑢2) by  
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𝑐(𝑢1,  𝑢2) =
𝜕2

𝜕𝑢1𝜕𝑢2
𝐶(𝑢1, 𝑢2).                      (4)   

 
The following relationship between the joint density 
function 𝑓(⋅,⋅) and the copula density function 𝑐(⋅,⋅) can 
readily be obtained from Equation (1): 

 
𝑓(𝑥1, 𝑥2) = 𝑓1(𝑥1)𝑓2(𝑥2) 𝑐(𝐹1(𝑥1), 𝐹2(𝑥2)),        (5)  

 
where 𝑓1(𝑥1)  and 𝑓2(𝑥2)  respectively denote the 
marginal density functions of 𝑋1 and 𝑋2. Accordingly, the 
copula density function can be expressed as follows: 

 

𝑐(𝑢1,  𝑢2) =
𝑓(𝐹1

−1(𝑢1), 𝐹2
−1(𝑢2))

𝑓1(𝐹1
−1(𝑢1)) 𝑓2(𝐹2

−1(𝑢2))
 .                    (6) 

 
The proposed approaches to estimating copula 

density functions are summarized in Sections 2 and 3. 
The estimation of a joint density function in terms of 
marginal distributions and a copula density estimate is 
discussed in Section 4. Three illustrative examples are 
provided in the last section. 

 

2. Copula Density Based on Kernel Density 
Estimation  

On applying the kernel density estimation (kde) 
method to a given bivariate dataset, one can obtain an 
estimate of the bivariate probability density of 𝑿. In light 
of Equation (6), the copula density can be represented as 
follows:  
 

𝑓𝑐(𝑢1, 𝑢2) =
𝑓𝐗(𝑄𝑋1

(𝑢1),𝑄𝑋2
(𝑢2))

𝑓𝑋1(𝑄𝑋1
(𝑢1))𝑓𝑋2(𝑄𝑋2

(𝑢2))
 ,                (7)   

 
where 𝑓𝐗 can be estimated by a bivariate kde and 𝑄𝑋𝑖

(⋅) 

denotes the quantile function.  
The marginal density function of each variable can 

be obtained by determining their respective kernel 
density estimates. The inverse cdfs 𝑄𝑋1

and 𝑄𝑋2
 can be 

determined in polynomial form by making use of a 
moment-based method or the method of least squares.  

 
3. A Moment-based Bivariate Polynomial 
Approximation of the Copula Density 

Once a copula density is determined from 
Equation (7), it can be approximated by the product of a 
base density and a bivariate polynomial whose 
coefficients are obtained from the joint moments 
associated with the copula density. 

The proposed procedure for achieving this is 
described in the next result. 

 
Result 1 Let 𝑓𝑋(𝑥1, 𝑥2)  be the density function of a 
bivariate continuous random vector 𝑿 = (𝑋1, 𝑋2) defined 
in the rectangle (𝑙1, 𝑢1) × (𝑙2, 𝑢2), whose joint moments 
are 

 

𝜇𝑿(𝑖, 𝑗) ≡ ∫ ∫ 𝑥1
𝑖𝑢2

𝑙2

𝑢1

𝑙1
 𝑥2

𝑗
 𝑓𝑋(𝑥1, 𝑥2)𝑑𝑥2𝑑𝑥1.          (8) 

 
Let 𝜓(𝑥1, 𝑥2) be an initial joint density estimate, whose 
joint moments are 

 

𝑚𝑋(𝑖, 𝑗) ≡ ∫ ∫ 𝑥1
𝑖𝑢2

𝑙2

𝑢1

𝑙1
𝑥2

𝑗
  𝜓(𝑥1, 𝑥2)𝑑𝑥2𝑑𝑥1.       (9) 

 
Assuming that the sequence 𝜇𝑋(𝑖, 𝑗),  𝑖 = 0,1,2, … ,  𝑗 =
0,1,2, uniquely defines the distribution of 𝑿, the density 
function of 𝑿 can be approximated by 

 

𝑓𝑛(𝑥1, 𝑥2) = 𝜓(𝑥1, 𝑥2) ∑ ∑ 𝜉𝑖,𝑗
𝑛
𝑗=0

𝑛
𝑖=0 𝑥1

𝑖 𝑥2
𝑗
,      (10) 

 
where 𝜉𝑖,𝑗  can be determined by letting  

 

∫ ∫ 𝑦1
ℎ𝑦2

𝑔𝑢2

𝑙2

𝑢1

𝑙1
𝑓𝑿(𝑥1, 𝑥2)𝑑𝑥2𝑑𝑥1 =  

∫ ∫ 𝜓(𝑥1, 𝑥2) ∑ ∑ 𝜉𝑖,𝑗
𝑛
𝑗=0 𝑥1

𝑖+ℎ𝑥2
𝑗+𝑔𝑛

𝑖=0 𝑑
𝑢2

𝑙2
𝑥2𝑑

𝑢1

𝑙1
𝑥1,   (11) 

   
ℎ = 0, 1, … , 𝑛;  𝑔 = 0, 1, … , 𝑛, or equivalently,  
 

𝜇𝑋(ℎ, 𝑔) = ∑ ∑ 𝜉𝑖,𝑗𝑚𝑋(𝑖 + ℎ, 𝑗 + 𝑔)𝑛
𝑗=0

𝑛
𝑖=0 ,          (12) 

 
ℎ = 0, 1, … , 𝑛;   𝑔 = 0, 1, … , 𝑛.  Thus, we can obtain the 
polynomial coefficients 𝜉𝑖,𝑗  and 𝑓𝑛(𝑥1, 𝑥2)  from the 

moments of 𝑓𝑋(⋅)  and 𝜓(⋅)  by solving the linear system 
specified by Equation (12). 

The degree 𝑛 used in the polynomial adjustment 
should be selected so that 𝑓𝑛  provides an accurate 
approximation to the estimate of the copula density, 
which can be determined for instance by evaluating their 
integrated squared differences. 

 

4. Estimating a Joint Density from the Marginal 
Density Estimates and the Copula Density 

On applying Equation (5), that is, 
 
𝑓(𝑥1, 𝑥2) = 𝑓1(𝑥1)𝑓2(𝑥2) 𝑐(𝐹1(𝑥1), 𝐹2(𝑥2)),        (5) 
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one can determine the joint density where for instance, 
𝑐(⋅,⋅) could be taken as a Bernstein copula density which 
is described in Sancetta and Satchell [5].  

Suppose that observations are available on the 
random variables 𝑋1  and 𝑋2 . The marginal densities 
𝑓1(𝑥1) and 𝑓2(𝑥2) are estimated and a Bernstein's copula 
density of high order is determined. A joint density 
estimate of (𝑋1, 𝑋2) can then be obtained via Equation 
(5). 

 

5. Applications 
The results are applied to two stocks’ closing 

prices as well as a stock’s price and its running 
maximum. 

 
5.1. Copula Density Estimation Methodologies 
Applied to Two Stocks 

The two stocks selected are GOOG (Alphabet Inc.) 
and AAPL (Apple Inc.). The bivariate data are the daily 
closing prices of (GOOG, AAPL) in 2019. Each component 
of the data has been standardized. The joint KDE of 𝑿, the 
marginal densities of 𝑋1  and 𝑋2  and the corresponding 
cdf inverses are displayed in Figures 1-5. 
 

 
Figure 1. Bivariate kde of 𝑋.  

 

 
Figure 2. Marginal density of 𝑋1. 

 

 
 

 
Figure 3. Marginal density of 𝑋2. 

 

 
Figure 4. Estimate of inverse cdf 𝑄𝑋1

. 

 

 
Figure 5. Estimate of inverse cdf 𝑄𝑋2

. 

 

 
Figure 6. KDE based copula density. 

 

 
Figure 7. Moment-based bivariate polynomial estimate of the 

copula density. 
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The resulting KDE based (Section 2) and moment-

based (Section 3) copula densities plotted in Figures 6 
and 7 are seen to be similar. 
 
5.2. Determination of a Joint Density Estimate from 
the Marginal Density Estimates and the Copula 
Density 

Using the two stocks’ standardized data, a 
Bernstein’s copula density of degree 250, which is shown 
in Figure 8, is utilized as an estimate of the underlying 
copula density. The density estimate (Figure 9) resulting 
from the application of the methodology described in 
Section 4 and a KDE (Figure 10) exhibit very similar 
features. 

 

 
Figure 8. Bernstein’s copula density with degree 250. 

 

 
Figure 9. The estimated joint density. 

 

 
Figure 10. Bivariate KDE of 𝑋. 

 
5.3. Copula Associated with a Brownian Motion 
Process and Its Running Maximum 

The data consists of the daily closing prices of 
AC.TO (Air Canada) during 2019. To relate the data to a 
standard Wiener process, the first data point should be 
zero, the differences between successive observations 
should ideally often change signs and have a variance of 
one, and there should be one unit of time between 
successive observations. Hence the following 
transformation is used.  

Let 𝑈1, 𝑈2, … , 𝑈𝑛  denote the closing prices and 
𝑉1, 𝑉2, … , 𝑉𝑛−1  be the differences between successive 
closing prices, that is, 𝑉𝑖 = 𝑈𝑖+1 − 𝑈𝑖; denoting by 𝜎𝐷 the 
standard deviation of the differences 𝑉1, 𝑉2, … , 𝑉𝑛−1, the 

following transformation is applied 𝑊𝑖 =
𝑈𝑖−𝑈1

σ𝐷
 and the 

resulting data is denoted by 𝑊1, 𝑊2, … , 𝑊𝑛.  
Let 𝑍𝑖  be the 𝑖th  running maximum, that is, 𝑍𝑖 =

Max{𝑊1, 𝑊2, … , 𝑊𝑖} , 𝑖 = 1, 2, … , 𝑛 . Then, the resulting 
bivariate data, (𝑊𝑖, 𝑍𝑖), 𝑖 = 1, 2, … , 𝑛, has the features of 
a Brownian motion process and its running maximum.  

The 𝑊𝑖’s and 𝑍𝑖 ’s are plotted in Figures 11 and 12. 
The resulting copula density as obtained by applying the 
methodology described in Section 2, is shown in Figure 
13. 

 

 
Figure 11. List Plot of the 𝑊𝑖 ’s. 

 

 
Figure 12. List Plot of the 𝑍𝑖 ’s. 
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Figure 13. The estimated copula density. 

 

6. Conclusion 
As copula density estimates are usually expressed 

in complicated forms, the bivariate polynomial 
approximation that is proposed in this paper ought to 
prove more suitable for reporting purposes. 
Approximations by means of Bernstein polynomials and 
the kernel density estimation approach are discussed as 
well. Additionally, a flexible technique for estimating 
joint density functions is introduced. The proposed 
methodologies were successfully applied to two stocks' 
closing prices as well as a set of observations and its 
running maximum. 
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