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Abstract - Solar powered unmanned ground vehicles (SPUGV) 
can be used to monitor remote points of interest. Heuristic 
algorithms have been developed for path planning of SPUGVs in 
known solar environments while considering the battery energy 
recharge. However, not all environments have detailed solar 
maps in general, obstructing the energy-efficient path planning. 
In this paper, a control algorithm is developed to prioritize the 
battery life of a SPUGV in an unknown solar environment. The 
algorithm incorporates a switching cost function where one cost 
function prioritizes the goal position when the battery on the 
SPUGV is above a set threshold and the other prioritizes finding 
solar irradiance peaks to charge the battery. Local solar 
irradiance peaks are identified by a filtering approach from 
collected data in a local sample area. From simulations, the 
algorithm results in the SPUGV reaching the point of interest 
with a higher battery charge than a direct path to the point 
without any prior solar mapping.  
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1. Introduction 

Environmental monitoring is very important to 
help determine the ecological health of an area. For 
example, animal population, foliage health, local weather 
information, air pollution, and water quality are all 
important factors that can be monitored using 
unmanned ground vehicles (UGV) [1-4]. These missions 
require a long-term process and are best done remotely, 
as a result, any UGVs sent into the field to study the 

environment need to survive for long periods of time and 
travel far distances [5]. With Ray [6], solar harvesting 
was used in order to have the “cool robot” SPUGV travel 
500 km across Antarctica to conduct and run scientific 
experiments. Areas such as Antarctica have consistently 
high sources of solar irradiance (SI) so path planning 
towards a goal was focused on rough terrain and 
obstacle avoidance. Others such as Plonski [7,8] 
developed an algorithm to construct a solar map for a 
defined area using an SPUGV for future path planning in 
the constructed solar map. Kaplan [9,10] developed a 
time-optimized path planning algorithm for a SPUGV in a 
known solar environment so that the robot minimized 
travel time while also moving through high SI points on 
its way to the goal in order to increase the battery life of 
the SPUGV. All of the approaches require significant 
planning and mapping of an area in order for the SPUGV 
to navigate through it. Also, as Plonski [7] discussed, the 
solar environment in an area is constantly changing as 
the sun moves, so any solar mapping data may be 
inaccurate by the time the robot begins path planning.  

Despite the research for path planning in known 
solar environments, little has been done for path 
planning in unknown solar environments. Current path 
planning techniques need detailed solar environment 
information for the SPUGV to traverse an environment 
which is not always feasible or reasonable. Solar 
environments are constantly changing each day and 
throughout the year, therefore, path planning in an 
unknown solar environment would make environmental 
monitoring missions using UGV’s a more viable option. 
To this end, we propose a cost function switching (CFS) 
algorithm developed to maximize the battery life of a 
SPUGV as it travels to points of interest in an unknown 
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solar environment. The major contribution of this work 
is that the CFS algorithm eliminates the need for prior 
solar information of an area for SPUGV path planning in 
environmental monitoring missions. 

 
2. Problem Definition 

Suppose a SPUGV is placed into an environment 
with a variety of SI intensities with the task to reach 
multiple points of interest and then to return to the 
starting position with the maximum battery life 
achievable. Figure 1 demonstrates a discretized global 
solar map with the SI values ranging from high in red, to 
low in dark blue where X1, X2, and X3 are points of interest 
in sequential order.  

 
Fig. 1: Discretized basic solar map with multiple points of 

interest. 

 
The problem can be defined as two path cost 

functions that seek to minimize the amount of energy 
expended when either moving towards a point of 
interest or a SI peak to charge. The first cost function J1 
seeks to minimize the control input cost with the goal 
position being the terminal cost. The J2 cost function also 
minimizes the path cost of the input velocity, however, 
the terminal cost is a sampled local SI peak instead of a 
point of interest or goal position. With the SPUGV’s 
current position 𝑥(𝑡), the goal position 𝑥𝑔, the local 

energy peak position 𝑥𝑝, and the control input 𝑢, we use 

a first-order robot dynamics and the control input is 
saturated by 𝑢𝑚𝑎𝑥 as constraints. Then the optimization 
problem is formulated by 
 

min 𝐽1 = ∫
1

2
||𝑢||2𝑑𝑡

𝑡+𝑇

𝑡
+ 𝜙𝑓𝑔 

s.t. �̇� = 𝑢  
x(0) = x0 
x(tf) = xg 

∥u∥ ≤ umax 

(1) 

min  𝐽2 = ∫
1

2
||𝑢||2𝑑𝑡

𝑡+𝑇

𝑡
+ 𝜙𝑓𝑝 

s.t. �̇� = 𝑢  
x(0) = x0 
x(tf) = xp 

∥u∥ ≤ umax 
 

(2) 

where the symbol 𝜙𝑓𝑔 is the terminal cost of the goal 

and 𝜙𝑓𝑝 is the terminal cost of the local SI peak as 

follows: 
 

𝜙
𝑓𝑔

=
1

2
||𝑥(𝑡) − 𝑥𝑔||2 (3) 

𝜙
𝑓𝑝

=
1

2
||𝑥(𝑡) − 𝑥𝑔||2 (4) 

 
With the cost functions defined, the optimal 

solution 𝑢∗ can be obtained by two Hamiltonian 
equations. The Hamiltonian for J1 is shown in equation 
(5), which looks similar to the Hamiltonian for J2.  
 

ℋ1 =
1

2
||𝑢||2 + 𝜆1

𝑇𝑢 (5) 

−𝜕ℋ1

𝜕𝑥
= 𝜆′ = 𝜆1

𝑇 = 0 (6) 

−𝜕ℋ1

𝜕𝜆
= 𝑢 = 𝑥′ (7) 

−𝜕ℋ1

𝜕𝑢
= 0 = 𝑢∗(𝑡) + 𝜆1

𝑇  (8) 

 
Equations (6) and (7) can be discretized and 

combined with equation (9) to find the optimal control 
input 𝑢∗ in discrete time intervals.  

 

𝜆(𝑡𝑓) =
𝑑𝜙

𝑓𝑔

𝑑𝑡𝑓

= 𝑥(𝑡) − 𝑥𝑝 (9) 

𝜆′ =
𝜆(𝑡+1)−𝜆(𝑡)

𝛥𝑡
= 0  (10) 

𝜆(𝑡 + 1) = 𝜆(𝑡) (11) 
 

Likewise, for equation (11), equation (7) can be 
rewritten into equation (12).  
 

𝑥(𝑡 + 1) = (𝑢∗(𝑡) + 𝑥(𝑡)) ⋅ 𝛥𝑡 (12) 
 

Because the costate variable 𝜆(𝑡) is unchanging for 
both J1 and J2, the problem is defined by four equations 
that provide the optimal path for J1 and J2 which are 
shown in equations (13) through (16). Note that 
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equation (13) is the costate variable definition for J1 and 
equation (14) for J2. 
 

𝜆𝐽1[𝑡] = 𝑥[𝑡] − 𝑥𝑔 (13) 
𝜆𝐽2[𝑡] = 𝑥[𝑡] − 𝑥𝑝 (14) 
𝑢∗[𝑡] =  −𝜆[𝑡] (15) 
𝑥∗[𝑡 + 1] = 𝑥[𝑡] + 𝑢∗[𝑡] (16) 

 
At each time step, the optimization problems in (1) 

and (2) can be solved based on the Hamiltonian 
approach (5) - (16) in a receding-horizon manner [11 - 
17]. This implies that after the local SI measurement is 
taken using the onboard sensor, the SPUGV can 
determine where to go with a horizon length 𝑇, which is 
repeated at each time. This receding-horizon technique 
will enable the SPUGV to cope with a realistic scenario 
where a global SI map is not available and hence, the 
SPUGV needs to make a decision only with local 
information. 

In this case, the challenging part is how to 
determine the appropriate control input between the 
two optimal solutions. The performance will vary 
depending on the switching logic for the control input. In 
what follows, we thus investigate the switching 
algorithm between the two different control inputs. 
 

3. Main Result 
3. 1. CFS Algorithm for Path Planning 

In order to maximize the battery, the robot needs 
to prioritize either charging the battery or reaching the 
goal at any given time. This is our scenario and the 
proposed CFS algorithm will determine the instance of 
switching between the two optimal control inputs 
obtainable by solving for J1 or J2. We utilize a battery 
threshold as a switching criteria between the two 
functions. For instance, if the battery threshold is set to 
60% of the max battery and the battery reaches 60%, 
then the robot begins searching for nearby solar 
irradiance peaks. This is done with a sensing algorithm 
to determine the highest irradiance value with the 
closest distance to the goal. When a peak SI value is 
found, the robot will go towards the peak to charge the 
battery. The process of finding a SI peak is done 
continuously until the SPUGV reaches the local peak. The 
decision is made by observing four different variables, 
the SI at the current location, the SI at the measured 
peak, the distance from the current location to the peak, 
and the distance between the current location and the 
goal. If the robot has a lower measured SI than the peak 

and the distance to the peak is smaller than the distance 
to the goal, then the robot will move to the peak value as 
depicted in the flow chart shown in Figure 2. If the robot 
has a SI larger than the measured peak, the robot is at a 
local maximum and will stay there until charged to a set 
upper charging threshold. If the goal distance is less than 
the distance to the peak, the robot will just go towards 
the goal. If none of these conditions are met, the robot 
will continue towards the goal to avoid getting stuck 
along the path.  

 

 
Fig. 2: CFS Path planning algorithm flowchart. 

 
3. 2. Sensing Algorithm 

Choosing a single local SI peak among multiple of 
them requires another algorithm to detect and evaluate 
the SI around it. The sensing algorithm takes samples of 
a set sampling radius and step size and creates a 
sampling matrix of local SI values. An example sampling 
matrix is shown in Figure 3, where the local sampled SI 
values also include the SI of the robot’s current position. 
Efficient evaluation of the samples was done by 
incorporating a statistical threshold so that only the 
highest SI values are observed. The threshold for peaks 
was set at 2 standard deviations from the mean of SI 
samples so that only the top 5% of SI in the local region 
are considered. The results from the thresholded 
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sampling algorithm are multiple high SI peaks and their 
locations. Because the robot can only go towards one of 
the points, the sampling algorithm evaluates the SI at 
each local peak, the distance between the robot's current 
positions, and the distance between the peak and the 
goal position. By having distance as a method for 
determining the local max SI peak, the algorithm 
prioritizes energy peaks that are closer to the goal which 
prevents the robot from diverging away from the goal 
while searching for energy.  

Figure 3 visualizes what the local sample from the 
robot looks like. The red squares indicate highest SI 
peaks while blue squares indicate lowest SI peaks. As 
shown in Figure 3, the SPUGV does not see the global 
solar information and can only see within the sample 
radius. With the thresholding, only two peaks would be 
considered for the local peak and therefore can be 
compared along with the distance directly to the goal 
from the robot to determine which path to be taken.  

 

 
Fig. 3: Sensing algorithm example. 

 

4. Simulations 
4. 1. CFS Algorithm for Path Planning 

In order to test the application of using the CFS 
algorithm, two different simulation environments were 
created. The first environment was mapped in reference 
to a section of the Santa Fe National Forest in New 
Mexico, USA. The simulation uses multiple Gaussian 
distributions of SI that the robot can measure. New 
Mexico receives an average of 41.6 W/m2 of SI which is 
reflected in the solar map [18]. The high-intensity 
regions of the map indicate open areas such as a meadow 
in the forest with the assumption that the simulation is 
occurring when the sun is perpendicular to the ground 
and unchanging throughout the simulation. For 
simplicity, the simulation assumes that there are no 
inclination changes or obstacle obstructions that would 

be seen in the real environment. Researchers such as 
Engine, Wang and Mei have implemented more realistic 
vehicle dynamics however this is beyond the scope of 
this paper [19-21]. The robot chassis chosen for the 
simulation is the MLT-JR with two IG32 motors, two 
2200maH batteries. The solar panel being simulated on 
the robot is an Eco-Worthy 10 W panel as shown in 
Figure 4. 

 

 
 
Fig. 4: MLT-JR, and Eco-Worthy 10W solar panel.  

 

In the Santa Fe simulation, the SPUGV traveled 
from an initial position to a single point of interest. The 
SPUGV would start and end in a meadow where SI should 
be found. The distance between the two points was 2.5 
km which is within the max distance the SPUGV can 
travel on one full charge of battery. The simulation was 
run using both the CFS algorithm and a direct route 
approach to determine if the battery at the goal position 
could be improved. The second Santa Fe simulation 
involved four points of interest on the same solar map as 
simulation 2. For simulation 2, the SPUGV starts at an 
initial point and then travels to each point directly, only 
moving onto goal 3 after arriving at goal 2 and so on. The 
total distance to travel to all the points sequentially was 
2.5 km. The CFS algorithm was also compared to a direct 
route approach with multiple points of interest. Both 
simulations use a 5 m sensing radius for the SPUGV.  
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Fig. 5: Satellite image of Santa Fe simulation map area. 

 

 
Fig 6: Corresponding global solar irradiance map of 

Santa Fe simulation.  
 

In order to understand the more detailed path 
behavior of the SPUGV, small scale lab simulations were 
created. The lab simulation involves the SPUGV traveling 
through a flat environment with set SI peaks along its 
path as shown in Figure 7. Two types of lab simulations 
were created, 100 meter and 200 meter distance. The 
same robot and SI max used for the Santa Fe simulations 
are applied to the lab simulations. Because of the shorter 
distance, the robot’s battery lasts longer than what is 
expected in real life so for the lab simulations the battery 
threshold was increased to 96% compared to 60% in the 
Santa Fe simulations.  

 
Fig. 7: Lab simulation environment with SI peaks 

 
4. 2. Simulation Results 

The simulation shown in below demonstrates that 
the SPUGV using the CFS algorithm will reach the goal 
position with a significantly higher battery percentage 
than a direct route to the goal. For simulation 1, the 
trajectory of the SPUGV heads directly towards the goal 
until the battery threshold of 60% is met where it begins 
searching for SI peaks. Figure 8 shows the local peak SI 
values as bright green triangles. The path clearly shows 
the robot traveling towards the peak that is closest to the 
final goal. In the simulation, the CFS algorithm took 166 
minutes longer to reach the goal than the direct route, 
however, the CFS resulted in a 40.7% higher battery 
percentage at the goal. This shouldn’t be a problem for 
applications like environmental monitoring, where a 
sustainable operation of UGVs is much more important 
than the time taken. Likewise, for the second simulation, 
the SPUGV took 333 minutes longer to complete the loop 
but with 70% more battery.  
 

 
Fig. 8: Simulation 1, single goal on Santa Fe Forrest.  
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Start 

Start 

Goal 
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Table 1. Simulation 1 battery and time results.  

Algorithm Time 
(minutes) 

Battery % 
at tf 

None 49 24.2 
CFS 215 64.9 

 

 
Fig. 9: Simulation 2, multiple goals on Santa Fe Forrest.  

 
Table 2: Simulation 2 battery and time results. 

Algorithm Time 
(minutes) 

Battery % 
at tf 

None 69 0.7 
CFS 402 71.0 

 
For the lab simulations, the local trajectory of the 

SPUGV can be observed, the locally detected SI peaks are 
red triangles. In simulation 3, the SPUGV can choose 
between two different equidistant SI peaks of different 
intensities along its path. The sampling algorithm 
chooses the highest peak in the SPUGV’s range that is 
closest to the goal. The resulting trajectory wraps around 
the peak towards the goal until it reaches a high enough 
SI peak to charge. In simulation 4, the SPUGV’s ability to 
travel towards a goal position if it gets close enough to it 
was tested. As shown in Figure 13, even if a peak position 
is very close to a goal position, the SPUGV will go towards 
a goal position. This will prevent the SPUGV from 
diverging from a goal position to charge if it is close to 
the goal. In simulation 5, the goal position was moved an 
additional 100 meters so the SPUGV would need to 
recharge more than once. At longer distances, the battery 
difference between a direct and CFS trajectory is much 

more noticeable as the SPUGV had almost 8% higher 
battery life with the CFS algorithm.  

For the multi-goal simulations in simulation 6 and 
7 (Figures 15 and 16, respectively), the SPUGV’s 
trajectory is not as predictable as a single goal. In this 
case, the SPUGV was given two goal positions to reach 
before returning to the start location forming a 
triangular trajectory when using a direct path. With the 
CFS the algorithm favored the side of the simulation with 
more solar irradiance despite it only being able to see SI 
in a 5 meter radius. One thing to note with the CFS 
algorithm is that it not only takes longer because the 
SPUGV needs to charge, but it also limits the mobility of 
the SPUGV to the local SI peak so it doesn’t overshoot the 
peak. Throughout the simulations, there can be seen 
some peaks that the SPUGV doesn’t follow, these peaks 
are detected but have a small SI value less than 1W/m. 

 

 
Fig. 10: Simulation 3, direct robot trajectory and local SI peak 

locations with equidistant SI peaks. 
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Fig. 11: Simulation 3, CFS robot trajectory and local SI peak 

locations with equidistant SI peaks. 

 
 

Table 3: Simulation 3 battery and time results. 

Algorithm Time 
(minutes) 

Battery % 
at tf 

None 5 95.1 
CFS 25 99.1 

 

 
Fig. 12: Simulation 4, direct robot trajectory and local SI peak 

locations with SI peak near goal. 
 

 
Fig. 13: Simulation 4, CFS robot trajectory and local SI peak 

locations with two different SI peak locations near goal. 
 

Table 4: Simulation 4 battery and time results. 

Goal Goal 

Goal Goal 

Start Start 

Start Start 
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Algorithm Final SI Peak 
distance from 
goal x location 
(m) 

Time 
(minutes) 

Battery % 
at tf 

None 15  10 89.0 
CFS 15 36 94.5 
CFS 10 39 93.7 

 

 
Fig. 14: Simulation 5, robot trajectory and local SI peak 

locations with variety of SI peak sizes. 
 

Table 5: Simulation 5 battery and time results. 

Algorithm Time 
(minutes) 

Battery % 
at tf 

None 5 95.1 
CFS 25 99.1 

 

 
Fig. 15: Simulation 6, multi-goal trajectory with 2 goals and 

returning to start. 

 
Table 6: Simulation 6 battery and time results. 

Algorithm Time 
(minutes) 

Battery % 
at tf 

None 5 95.1 
CFS 25 99.1 

 

Goal Goal 

Goal 1 Goal 2 Goal 2 Goal 1 

Start Start 

Start Start 
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Fig.16: Simulation 7, multi-goal trajectory with 5 goals. 

 
Table 7: Simulation 7 battery and time results. 

Algorithm Time 
(minutes) 

Battery % 
at tf 

None 20 83.5 
CFS 71 96.3 

 
5. Conclusion 

In this paper, maximizing battery life during the 
mission such as environmental monitoring in an 
unknown environment is shown to be effectively done 
with the proposed CFS algorithm. The proposed method, 
which prioritizes either the goal point or a local peak of 
SI depending on the remaining battery, guarantees that 
it will reach a point of interest with a higher battery life 
than going directly to a goal and therefore, extend the 
mission life. The simulations shown demonstrate the 
versatility of the CFS algorithm in a variety of possible 
scenarios. As long as a SI peak is detectable along the 
path of the SPUGV, the battery life will be significantly 
higher than just reaching a goal.  
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