
Avestia Publishing

Journal of Machine Intelligence and Data Science (JMIDS)

Volume 2, Year 2021

ISSN: 2564-3282

DOI: 10.11159/jmids.2021.007

54

Date Received: 2020-12-14

Date Accepted: 2021-05-12

Date Published: 2021-11-22

MODBUS: A Target for Covert Communication in Iot
Devices

Sashaa Nagrikar1, Saeed Alshahrani2, Daryl Johnson3
Rochester Institute of Technology, Department of Computing Security

1 Lomb Memorial Drive, Rochester, US
sn1945@rit.edu1; sashaanagrikar@gmail.com1

 sa7762@rit.edu2
daryl.johnson@rit.edu3

Abstract - Internet of Things (IoT) is a part of Cyber Science that
has been gaining popularity exponentially. IoT are generally
referred to as smart devices since they carry out their operations
with minimal human intervention. The IoT devices are
connected to each other via a device such as a centralized
modem. Through this method, IoT helps provide an easier life for
its consumers. Even so, these smart devices are flawed and face
privacy challenges and can be exploited at the physical level to
obscurely perform information exchange that they are not
intended to do. This is known as a covert channel. By definition,
a covert channel is some form of a medium which is used to
exploit the functionalities of an overt channel to secretly send
and receive messages which they are not originally programmed
to do so. Following this definition, “MODBUS Protocol” was
chosen to be used as a communication protocol in a Master-
Slave model for a covert channel.

The MODBUS protocol uses a Master and Slave system
model where the Master sends functional instructions to the
slaves and the slaves return the output corresponding to the
instruction. By exploiting this feature of the Master-Slave
architecture, we have built a covert channel wherein the
receiver maps each character of the covert message into an
instruction and sends it to the slave and the slave strips off the
data in that instruction and sends it to the intended receiver,
where the receiver maps the instruction back to the character
and prints out the message.

Keywords: MODBUS, Master, Slave, Covert Channel

© Copyright 2021 Authors - This is an Open Access article
published under the Creative Commons Attribution
License terms (http://creativecommons.org/licenses/by/3.0).
Unrestricted use, distribution, and reproduction in any medium
are permitted, provided the original work is properly cited.

1. Introduction
According to an IoT tech news source, "Sales of IoT

cellular devices will approach 350 million per year by
2025" [1]. This shows that the upcoming expectations of
the IoT devices aim at convenience for people to use.
However, there is a known fact in the world of Cyber
Science that “Security and Convenience are related in
indirect proportionality”. More convenience, less
security. By taking advantage of this fact, we came up
with a covert channel to abuse the functionalities of an
IoT device by using MODBUS protocol since IoT is built
using protocols that help communicate within
centralized networks. A covert channel is a form of a
communication medium that is kept hidden so that
messages could be sent and received in secrecy. In order
to do so, the original functionalities of an API are
programmed in a way to send and receive messages
thereby abusing it. For instance, if a person commands
Amazon Echo to switch on a light bulb, it must complete
only that particular functionality. However, this paper
talks about how messages can be sent and received along
with switching ON and OFF a light bulb in an IoT device.

Nowadays, IoT devices are operated over a
wireless internet connection (WiFi) and these
connections are established using a wireless protocol.
For example, MQ Telemetry Transport (MQTT) helps in
transmitting packets between IoT devices via remote
locations [3]. Instead of MQTT, for our research we have
used the MODBUS protocol to communicate with the IoT
device. The purpose of using MODBUS protocol in an IoT
device is that it is not easy to understand and even

55

harder to implement. Supervisory Control and Data
acquisition (SCADA) systems have adopted this protocol
because of its easy operability but not yet implemented
in IoT systems. Hence, such MODBUS requests could
escape through packet analyzers in current times.

MODBUS has two types of communications which
are query/response and broadcast [4]. The covert
channel in this paper uses the first approach. In the
query/response, the communication is between the
Master (user client) and the Slave (server-IoT device).
The Master initiates the communication by requesting
for the current status of the light bulbs (read commands)
and the Slave replies back with the status. The Master
could also request to change the current status of the
light bulbs from On to OFF or vice-versa (write
commands) and the Slave follows the functionality and
switches OFF or ON a light bulb accordingly. Another
example would be that the user wants to turn the heater
up; he would use the device application to initiate the
request to the centralized modem which is (Master) to
pass the request packets to the IoT heater (Slave). The
full establishment will be via MODBUS functions.

Figure 1: MODBUS in IoT

2. Related Work
 The Internet of Things (IoT) was aimed to

improve society's life in a comfortable way. For instance,
“turn the heater OFF “via Alexa is applied through
human’s voices. Which makes life easier instead of
physical movement. IoT devices authenticate each other
via a round network. It started from the user's voice then
centralized the area “router” and finally the meant device
to apply. Wi-Fi is one of the popular protocols that is
used in this authentication. In the past, Radio Frequency
Identifier (RFID) was the protocol to let things “devices”

authenticate each other via tracking the device’s tag [8].
When there is more than one device in an area, it comes
under a mesh network [9].

The SCADA system plays important roles for
processing controls that have network interfaces. The
methodology of that system is based on a monitor (PC),
programmable logic controller (PLC) or distributed
control systems (DCS) and sensors [10]. In the past, IEC
870 Telecontrol equipment was the protocol that linked
that methodology together. Since the SCADA system was
based on an open systems interconnection model (OSI),
this protocol was suitable for the authentication. By
1990, there was another innovative protocol Distributed
Network Protocol Version 3.0, (DNP3) [10]. It helped to
let master stations, remote telemetry units (RTUs) and
other intelligent electronic devices (IEDs communicate
with each other [10]. Compared to IEC 60870-5, this
protocol obtained wide attention because of equipment
manufacturers adoption [10]. Both protocols provide
reliable communication of data and control which
SCADA relies on [10].

 Modbus TCP/IP Protocol is better suited than
MODBUS RTU for IoT devices to manage request
messages and transmit data in a wireless environment.
It is also equipped to handle multiple masters (clients)
and slaves (servers) with minimally complex tasks in the
same environment requiring maximal complexity.
However before it could become a standard medium for
IoT protocols, this protocol needs several changes. A lack
of adequate computing power to manage a hash-based
algorithm to extract anonymity and integrity from its
requests was the explanation for missing an
authentication mechanism on the slave side.

A resource [7] explains that due to the lack of this
authentication mechanism in MODBUS, it is prone to
several attacks such as impersonation, IP spoofing, DDoS
and many more. Its vulnerabilities cause a threat to the
CIA, has inaccurate TCP session handling and complex
data handling structure.

3. Introduction to MODBUS protocol
The MODBUS packet is encapsulated inside a

TCP/IP frame which consists of the IP address of the
slave (the IoT device) and its standard MODBUS port
number 502 with which a TCP connection is established.
MODBUS protocol uses a connection-oriented
communication which consists of the two most
important functional parameters: the executable
function number and the register data, in order to
execute instructions

56

The most prominently used functions for
communication are read coils (0x01), Write Single Coil
(0x05) and Write Multiple Coils (0x0F)[4].

Figure 2: MODBUS TCP/IP Packet

Based on these function numbers, an IoT device

performs the operations. These functions are given
(address, count) values whenever a function is required
to be performed. The address parameter contains the
number addressed to a specific light bulb that one wants
to access. This parameter ranges from 0 to 9, since we
have used 10 light bulbs for this research paper. The
address value can be increased from more than 9 if more
devices are added to the circuit. The count parameter
only uses 2 values - 0 for OFF and 1 for ON.

For example:
pi.read_coils(1,1).bits: This command reads the

value of the bulb number 2 to see if it is switched ON.
pi.write_coil(2,1): This command will switch ON

the light bulb number 3.

Figure 3: MODBUS TCP/IP Function

Our covert channel has been developed to only and
only use the "read'' function for our commands list. The
reason being that "read" functions are not visible to
other users and are very rarely monitored. Another
reason to use the “read” function for this covert channel

is that it allows one to set the "count" value for more than
1. The slave uses this functionality to send out garbage
values back to the master but the slave is still entitled to
perform its functions. On the other hand, the "write"
function does not accept any value beside "0" or "1". For
any other value it sends out an error message; hence, to
separate the legitimate overt channel from the covert
channel, our working model depends on using "read"
functions only.

Figure 4: MODBUS TCP/IP Options

3.1 Working Model

The covert channel is built using 2 Masters and 1
Slave. To simplify, there will be 2 clients (covert sender
and covert receiver) and one server (IoT device). For the
IoT device, this working model uses Raspberry Pi 3
(RPi3). Before running the RPi3, connect to the circuit
according to Figure 5. The IoT application that processes
incoming instructions from the master to the slave will
be installed into the RPi3. This covert channel uses
Python’s “pymodbus” module to create the covert
channel[6].

57

Figure 5: Raspberry Pi 3 Circuit

Under normal circumstances, if Master 1 wishes to

communicate with its Slave, it will generate a MODBUS
packet containing the requested function and (address,
count) value and send it as a query to the RPi3. Using the
above example: pi.read_coils (1,1).bits, the function
number will be 0x01, the (address, count) value is (1,1).
Once the query is received by the Slave, it will start
peeling off the packet, layer-by-layer, to finally reach the
MODBUS TCP/IP packet. It checks for all the fields in the
MODBUS packet and fulfils the query request with an
appropriate response sent back to Master 1. Figure 6
shows the process clearly.

Figure 6: Working Model

4. Our Covert Channel

Based on the above working model, we made a few
changes in the working code that programmed the
Slave's functionalities.

Figure 7: Covert Model

● Step 1: Enter the covert message: For this

research paper, only block letters, 0-9 digits,
space and period "." were fed into the system.
The number of possible characters increases as
the number of devices connected to the Slave
increases.

● Step 2: Every character is mapped to a read
function. This read function is fed with garbage
(address, count) values. A combination of these
values is the actual message here. The reason the
"read" function was chosen is that RPi3
responded to garbage read requests but not
garbage "write" requests. Hence, the entire
mapping of characters is based on garbage
"read" requests only.

58

● Step 3: A legitimate MODBUS TCP/IP packet
with the embedded read function is sent to Slave
the IP address of Master 1. After looking at the
packet captures in Wireshark, they only seem to
be legitimate read requests initiated from Master
1. Hence, nothing suspicious is noticeable.

● Step 4: After the MODBUS packet reaches the
Slave, it analyses the packet structure and data.
The Slave specifically computes the value of
(address, count). Since the count is neither 0 nor
1, it sends back rubbish values to Master 1.
Meanwhile, according to the modified code, the
Slave strips off the values of (address, count) and
sends those as a string to the IP address of Master
2 as shown in Figure 5.

● Step 5: Master 2 is already running the listener
for the values sent by the Slave. The values reach
Master 2 and are further computed. A similar
version of the mapping is programmed at Master
2 which maps the received string into a
character. And thus, the covert message is
received.

4.1 Elements Of A Covert Channel

● Medium: the "read" function acts as a medium to
generate the covert message.

● Modulation: the (address, count) values act as
modulated values which represents each
character

● Encoding: at the receiver's side, the covert
message is encoded (mapped) into a series of
"read" functions with the modulated values
whereas on the receiver's side, the modulated
values are encoded back into the corresponding
characters.

5. Implementation
● Master 1: When the program is run, it asks for a

covert message. The covert message is fed in by the
covert sender as shown in figure 8.

Once the message is entered, Master 1 uses an
interval of time to map the characters to read commands
until the entire message is sent.

Figure 8: Covert Sender Master - 1

● Slave: At the server side, the Slave receives the read
requests and generates packets accordingly. It also
strips out the (address, count) value and sends it to
Master 2. The image shows that a "read" function is
requested having the function code 0x01. The
(address, count) are stripped and shown separately
and then concatenated into a string. When the
message is complete, the connection is closed.

● Master 2: The Master 2 side that is currently in
listener mode accepts the strings being sent from the
slave and maps them back into characters and prints
the output of every character as shown in figure 10.

Figure 9: RPi3

Figure 10: Covert Receiver Master – 2

5.1 Why This Covert Channel?

This covert channel was successfully built by
exploiting several MODBUS vulnerabilities.
● Lack of authentication: It is very easy to operate the

MODBUS protocol, if one knows the IP address and
the port number of the slave on which the MODBUS

59

protocol runs. As a result, any user can use the
MODBUS protocol to send commands to the slave
without any type of authentication. Due to this
reason, the protocol itself becomes promiscuous to
threats like impersonation.

● Improper error handling: The MODBUS protocol
does not make proper provisions to send error
messages to the master that sent incorrect requests
to the slave. Even though the slave sends back an
error message, it can be easily modified to send it to
another master in the form of a message. If MODBUS
had proper error handling methods, it should be able
to verify the master before taking error handling
actions.

● Allows invalid “count” values: The MODBUS
protocol is designed to allow either “0” or “1” in its
“count” field to locate the status of the device.
However, the protocol also accepted values greater
than 1 specifically for the “read” function. The
protocol sends back garbage replies to invalid
“count” values but not the exception messages. Using
this vulnerability, the covert message could be
created at the master’s end.

6. Analysis
6.1 Packets Per Second
● The above message consisted of 21 characters. In

order to send and receive 21 characters, it took a
total of 6-7 seconds. As shown in figure 11, the
numbers of packets sent per second were 3-5
packets.

● The above image shows the number of packets
transmitted (TX) and received (RX). However, the
maximum packets sent vary from 2 to 9 and the
number of received packets varies from 12 to 64.
Since every request requires a TCP 3 way handshake
to be established, the number of transmitted and
received packets increases.

6.2 Bandwidth

Even with such a noisy channel/interface, the
bandwidth required is very low. The analysis shows that
a maximum of 3 kb/s of bandwidth are used to send the
packets. It can be seen in figure 12.

Figure 11: Number of “read” requests sent per second

Figure 12: Bandwidth used to send the packets

6.3 Detectability

The "read" requests are flooded into the network
during character mapping; hence network packet
analyzers like Wireshark are unable to capture all the
read requests. Every MODBUS packet that is captured is
very similar to the legitimate "read" request packet.
Hence, it is difficult to decipher between legitimate and
garbage "read" requests. However, if one analyzes the
packets received by the Slave from the Slave side, one
can easily differentiate garbage read requests from the
legitimate ones since the "count" value in (address,
count) would be more than 1. However, in order to
analyze the packets, the packet analyzer must be
physically connected to the Slave which is never the
usual case.

Under normal circumstances, there are no packet
captures physically connected to the Slave side. As a
result, it is estimated that this covert channel escapes
detectability by over 90% of the time.

60

6.4 Robustness

This covert channel uses the "read" functions to
circulate covert data among the masters and slaves.
Since, from the analysis, it was seen that that slave
provides a higher priority for the "read" functions over
other functions, the robustness level is maintained from
medium to high. Even after the detection of the covert
channel, it is not likely to remove the malware infested
configurations from the IoT device. Along the similar
lines, the network packet analyzers process the read
requests from the covert channel as legitimate requests,
hence network filters also make little to no restrictions
for the "read" requests.

Figure 13: Wireshark capture of Garbage "read" request same
as legitimate "read" request from the sender PC

6.5 Prevention

The only way to prevent this covert channel is to
buy a new device. Once the malware is installed into the
slave, only through factory reset configurations the slave
can be brought back to its original functionalities. Since
its detectability rate is less than 10%, it is very much
likely to be ignored and hence prevention is averted.

7. Limitations
● The only characters used for this system model to

generate a covert message are block letters from A to
Z, digits from 0 to 9, space and period ".". For more
characters and special symbols, more light bulbs
must be added. Hence, more devices are connected
to the IoT device; better crafted covert messages will
be generated.

● In any situation, if a legitimate user accidentally uses
the count value as more than 1, it will get back
rubbish values as its answer; however the covert
message might be altered. This can be called a
plausible human error which cannot be escaped at
any point. In such cases, covert receivers might have
to ask the sender to send the message again.

● The MODBUS protocol used in this research is the
TCP/IP frame which does not include a CRC
(message error check functionality) unlike the
MODBUS RTU model. Hence, there are no functions
to check if the received covert message is correct.

8. Conclusion and Future Scope
MODBUS's mission is to establish a

communication between devices working in the same
network to secretly send information from one user to
another. For our covert channel, we established
communication between devices by abusing the basic
"read" functionality of the system model. The reason this
covert channel was implementable is because the
functionality did not include any restrictions on the use
of values outside their operating domain. The IoT device
was not designed on how to respond to garbage
requests. There are several IoT devices that are
manufactured with such loopholes for the sole purpose
of making them light on computing. Since IoT devices are
not equipped with high computing capabilities, their
programming is predominantly focused on "what to do''
when a correct command is entered, rather including
operations on a side note about "what to do'' when
garbage requests are received.

Since this covert channel was built on 10 LED
bulbs on a breadboard which were being operated using
Raspberry Pi 3, they are also implementable in worldly
acceptable IoT devices such as a thermostat, IoT
Christmas lights or even Amazon Echo. Once their
functioning APIs are gained, their functionalities can be
changed and inserted back into the devices very easily.
This idea could also be extended to using the MODBUS
RTU model for its functioning instead of the MODBUS
TCP/IP model since RTU includes a CRC check in its
packet. This would give more robustness to the covert
message. One may also use different function numbers
such as 0x02, 0x03, 0x04, 0x06, 0x07 and 0x08 other
than the ones used in this research paper.

 Creating a covert channel using the MODBUS
protocol gives endless possibilities of escaping detection
for a huge amount of time. From our analysis, we can

61

state that MODBUS protocol shows a promising path
towards covert communication.

Acknowledgement
We would like to thank our guide Prof. Daryl

Johnson for teaching us about Covert Channels and
helping us in our articulating idea for a covert channel
and providing us with the required hardware and
Raspberry Pi3 to build our covert channel. We would
also like to thank our Dean and Department Head for
their financial support behind our conference
publication.

References
[1] News, IoT, and IoT News. "Iot Cellular Device

Shipments To Approach 350M Per Year By 2025 –

With Strong China Growth Noted". Iot Tech News,

2019, IoT cellular device shipments to approach

350m per year by 2025 – with strong China growth

noted - Internet of Things News

[2] "What Is Modbus? 14 Most Asked Questions - B&B

Electronics". Bb-Elec.Com, 2019, What is Modbus?

14 Most Asked Questions

[3] "MQTT". Mqtt.Org, MQTT - The Standard for IoT

Messaging , 2020

[4] Igor Nai Fovino. ‘Design and Implementation of a

Secure Modbus Protocol’. In: Critical Infrastructure

Protection III. Ed. by Charles Palmer and Sujeet

Shenoi. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2009, pp. 83–96. isbn: 978-3-642-04798-

5

[5] Leonardo, Carlos, and Daryl Johnson. "MODBUS

covert channel." Proceedings of the International

Conference on Security and Management (SAM). The

Steering Committee of The World Congress in

Computer Science, Computer Engineering and

Applied Computing (WorldComp), 2014.
[6] Collins, Galen. "Pymodbus Documentation." (2013)

https://pymodbus.readthedocs.io/en/latest/index.html

[7] In Url: SCADA MODBUS Protocol Vulnerabilities -

Cyberbit, 2017

[8] X. Jia, Q. Feng, T. Fan and Q. Lei, ”RFID technology

and its applications in Inter- net of Things (IoT),”

2012 2nd International Conference on Consumer

Electronics, Communications and Networks

(CECNet), Yichang, 2012, pp. 1282-1285.

[9] Chew, Daniel. "Protocols of the Wireless Internet of

Things." (2019): 21-45.

[10] Clarke, Gordon, Deon Reynders, and Edwin Wright.

Practical modern SCADA protocols: DNP3, 60870.5

and related systems. Newnes, 2004.

https://www.iottechnews.com/news/2019/nov/08/iot-cellular-device-shipments-approach-350m-year-2025-strong-china-growth-noted/
https://www.iottechnews.com/news/2019/nov/08/iot-cellular-device-shipments-approach-350m-year-2025-strong-china-growth-noted/
https://www.iottechnews.com/news/2019/nov/08/iot-cellular-device-shipments-approach-350m-year-2025-strong-china-growth-noted/
http://www.bb-elec.com/Learning-Center/All-White-Papers/Modbus/The-Answer-to-the-14-Most-Frequently-Asked-Modbus.aspx
http://www.bb-elec.com/Learning-Center/All-White-Papers/Modbus/The-Answer-to-the-14-Most-Frequently-Asked-Modbus.aspx
http://mqtt.org/
http://mqtt.org/
https://pymodbus.readthedocs.io/en/latest/index.html
https://www.cyberbit.com/blog/ot-security/scada-modbus-protocol-vulnerabilities/#:~:text=The%5C%20SCADA%5C%20MODBUS%5C%2FTCP%5C%20protocol%5C%20contains%5C%20another%5C%20vulnerability%5C%20that%5C%20could,Inputs%5C%20request%5C%20and%5C%20response%5C%20messages
https://www.cyberbit.com/blog/ot-security/scada-modbus-protocol-vulnerabilities/#:~:text=The%5C%20SCADA%5C%20MODBUS%5C%2FTCP%5C%20protocol%5C%20contains%5C%20another%5C%20vulnerability%5C%20that%5C%20could,Inputs%5C%20request%5C%20and%5C%20response%5C%20messages

