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Abstract - SPARQL is a powerful query language for an ever-
growing number of Semantic Web applications. Using it, 
however, requires familiarity with the language which is not to 
be expected from the general web user. This drawback has led to 
the development of Question-Answering (QA) systems that 
enable users to express their information needs in natural 
language. This paper presents a novel dependency-based 
framework for translating natural language queries into 
SPARQL queries, which is built on the idea of syntactic parsing. 
The translation process involves the following steps: extraction 
of the entities, extraction of the predicate, categorization of the 
query’s type, resolution of lexical and semantic gaps between 
user query and domain ontology vocabulary, and finally 
construction of the SPARQL query. The proposed framework was 
tested on our closed-domain student advisory application 
intended to provide students with advice and recommendations 
about curriculum and scheduling matters. The advantage of our 
approach is that it requires neither any laborious feature 
engineering, nor complex model mapping of a query expressed 
in natural language to a SPARQL query template, and thus it can 
be easily adapted to a variety of applications. 
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1. Introduction 
The use of Linked Data technologies for building 

Semantic Web applications has grown exponentially in 
the last decade. These new technologies are radically 

changing current web services by allowing users to post 
personalized queries directly to digital libraries of 
various information resources and databases. A huge 
number of these resources are interconnected via the 
Linked Open Data Cloud (https://www.lod-cloud.net/) 
and provide users with direct access via SPARQL 
endpoints to thousands of RDF/RDFS datasets. The 
bottleneck of this technology is that users must be 
familiar with the query language SPARQL 
(https://www.w3.org/TR/sparql11-query/) to place a 
query. Even the most user-friendly SPARQL endpoints, 
such as DBPedia (https://dbpedia.org/sparql), suggest 
some basic knowledge on writing SPARQL queries. More 
sophisticated queries, or federated queries over multiple 
SPARQL endpoints, require in-depth familiarity with 
SPARQL which is not to be expected from the users of 
Semantic Web applications. This difficulty is well 
recognized in the Semantic Web community and various 
techniques were suggested to address it. These 
techniques can be divided into two categories: 
information extraction and semantic parsing. The former 
aim to identify the main entities of the user’s query and 
map them to ontology relations, most commonly by 
using pre-defined or automatically generated templates 
[1, 2, 3]. Semantic parsing techniques extract the 
meaning of the query by converting it into a syntactic 
structure [4, 5]. The main difficulty in this process is 
recognising the user’s intention expressed in the natural 
language query so that it can be adequately translated 
into a SPARQL query.  

This article presents a novel technique for 
converting user queries stated in natural language into 
SPARQL templates by dividing the translation process 
into sub-tasks that can be independently handled and 
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processed by means of rule-based algorithms. The 
proposed technique was tested on a prototype Semantic 
Web application intended to provide students in our 
department with information and advice about 
programs, courses, faculty, etc. with the ultimate goal to 
serve as a recommender system for student advising and 
course registration. Currently, all this information is 
scattered among multiple websites and may require 
extensive browsing to collect it. Furthermore, the 
integration and interpretation of collected information is 
up to the student and it may take additional coordination 
with a faculty advisor to obtain the desired query result.  

The article is structured as follows. In Section 2, we 
briefly discuss the RDF data model to provide some 
background for readers not familiar with the Semantic 
Web. The basic functionality of the student advisory 
application which was used to test the proposed 
technique is outlined in Section 3. Section 4 introduces 
the SPARQL query builder, and each one of the five 
subtasks involved in the translation process is discussed 
in detail and illustrated with examples. We conclude 
with a brief statement of our future plans. 

  

2. RDF Data Model and Semantic Web 
Technologies 

By utilizing Semantic web technologies, we can 
build applications which functionality goes beyond the 
traditional web-based search that intelligent assistants 
such as Siri, Cortana, or Google Assistant are intended to 
perform. This, however, may require building a new web 
infrastructure by converting needed information into a 
machine understandable format known as Resource 
Description Framework (RDF) 
(http://www.w3.org/RDF). RDF is a universal data 
model, which basic building block is the triple, a 
statement defining a relation between two web 
resources such as “Jones teaches Math101”. Here Jones 
and Math101 are called the subject and the object of the 
triple and teaches is the predicate expressing the relation 
between them. Each element of the triple <subject, 
predicate, object> is identified by its unique 
International Resource Identifier (IRI) (except for the 
object, which can also be a literal of any XML datatype) 
thus making it globally accessible across the web. 
Problem domains are described as sets of triples which 
represent directed graphs. Independent graphs can be 
easily merged via common nodes (subjects or objects of 
triples) thus forming a linked data network. Processing 
linked data is based on the following linked data 
principles [7]:  

1. Use unique identifiers, IRIs, to name every entity 
(resource), physical or abstract, that exists in the 
world. 

2. Use HTTP IRIs to allow users to look up those 
resources to gather information about them. 

3. When looking up an IRI, use RDF-based 
representation and SPARQL query language to 
access that IRI. 

4. Include links to associated IRIs to allow for 
automatic discovery of related data.  

Implementation of these principles allows for 
effortless management of large quantities of linked data 
and facilitates their integration and processing. The later 
is performed by the SPARQL Protocol and RDF Query 
Language (SPARQL) (http://www.w3.org/TR/rdf-
sparql-query/). SPARQL is a very rich language offering 
four different query forms depending on the expected 
result. The SELECT query uses a pattern matching 
algorithm to retrieve specific information, while 
DESCRIBE and CONSTRUCT queries return RDF graphs 
that can be combined with other graphs for further 
processing. ASK query is similar to SELECT query in that 
it also utilizes pattern matching, but it answers whether 
there is at  least one match  or no match at all. 

RDF provides the data model, but the Web 
Ontology Language (OWL) 
(http://www.w3.org/TR/owl-features/) is the current 
W3C recommendation supporting the development of 
Semantic Web applications. Building such applications is 
similar to the development of Knowledge-Based 
Systems. The knowledge base, called here the ontology, 
is defined as “… an explicit, formal specification of a 
shared conceptualization” [7]. The most notable 
difference between Semantic Web ontologies and 
traditional knowledge bases is that knowledge bases 
typically reflect the view of a domain expert, or a group 
of experts, while ontologies tend to reflect the consensus 
view of the community expressed by precisely defined 
terms. Ontologies also resemble relational database 
models, but in addition to relations between data they 
implicitly define formal rules of inference which allow 
data processing to be carried out by automated 
reasoners. This in turn, expends the scope of services 
provided by Semantic Web applications to allow for 
personalized response to a broad range of user queries.  
Semantic Web reasoners are based on the so-called 
Description Logics (DLs) [8]. These are decidable 
fragments of first-order logic intended to achieve 
favourable trade-offs between expressivity and 
scalability. Between themselves, DLs defer by the set of 

about:blank
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/


 46 

constructors they utilize to represent data and perform 
reasoning. One of the most expressive DLs, called 
SROIQ(D), underlines the latest version of OWL, OWL 2. 
It defines an ontology as a triple <T-Box, A-Box, R-Box>, 
where: 

 The T-Box defines domain terminology 
expressed as a hierarchy of classes related by 
subsumption, C ⊑ D, and equivalence, C  D, 
relations. It also includes a disjunction 
constructor, a special class expression Self: 
S.Self, and allows for qualified number 
restrictions n S.C and n S.C to express 
statements such as “a course with at least/at 
most 6 graduate students”.  

 The A-Box defines the domain description stating 
class membership of individuals (a  C), 
property relations between individuals (<a, R, 
b>), and equality relations between individuals 
(a = b).  

 The R-box defines complex domain relations as 
combination of properties, R1  R2 ⊑ S, allowing 
statements such as “hasTakenCS151  
hasTakenCS152 ⊑ canTakeCS153”, as well as 
describes properties of properties such as 
inverse properties, symmetry, reflexivity, 
irreflexively and disjunctiveness of properties. 

The next section outlines a prototype application 
utilizing the described technologies, which was used to 
validate the proposed natural language to SPARQL query 
builder technique.  

 

3. Student Advisory Application: design and 
functionality 

The core of the student advisory application is a 
bot intended to provide students with enhanced 
experience when seeking information about programs, 
courses, faculty, etc. offered by our department. Domain 
knowledge utilized by the advisory bot integrates 
information from multiple websites such as University 
catalogue, course scheduling system, departmental 
website, and more. Currently, to find the needed 
information a student would browse these different 
websites and at the end may not be able to find the 
answer they were looking for not necessarily because 
the information was not there, but because it might not 
be easily accessible.  

As stated in Section 2, Semantic web technologies 
allow to conventionalise integration of different 

information resources by “merging” them into a single 
linked data graph. To illustrate the functionality of the 
application, consider the following scenario. A transfer 
student is looking for courses to enrol given that she: 1.) 
has credit for CS 151, CS 152, and CS 253; 2.) can only 
take courses on Mondays and Wednesdays after 3 pm; 
3.) is a full-time student but wants to take only 4 courses; 
4.) prefers to take core courses rather than electives to 
ensure that she is on track to graduate in two years; and 
5.) wants to make sure that all prerequisites for senior 
level courses are satisfied. 

 A single SPARQL query on a linked data network 
will be sufficient to address the example scenario. The 
problem, however, is that the student is not expected to 
know SPARQL. Instead, a user-friendly interface should 
be available to translate user query into one or more 
SPARQL queries retrieving the relevant information. The 
SPARQL query builder described in Section 4 is intended 
to address this task.  

The architecture of the student advisory 
application is shown on Figure 1. The output from the 
SPARQL query builder is processed by a Java-based 
module which uses Apache Jena API 
(http://jena.apache.org) and Pellet reasoner [9] to 
acquire and integrate relevant domain information from 
the backend repository containing the domain ontology 
and the datasets. 

 

 
Figure 1. Student advisory application 

architecture 
 

To build the domain ontology (the T-Box), we used 
Protégé (http://www.protege.stanford.edu), which 
currently is the best-known open-source ontology 
editor. The illustrate the scope of the underlying domain, 
we show the class hierarchy, object, and data properties 
hierarchies on Figures 2, 3, and 4, respectively. 

The domain ontology is stored in a Turtle format 
which can be easily processed by the Java application 
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module. Datasets containing information from various 
web resources (the A-Box) are also stored as Turtle files. 

 
Figure 2. Class hierarchy 

 
 

 
Figure 3. Object properties hierarchy 

 

The ontology and the datasets are processed using 
Apache Jena API which provides extensive Java libraries 
for managing RDF datasets and OWL ontologies and 
allows for easy integration of SPARQL queries. In 
addition, Jena allows for integration of OWL 2 reasoner 
Pellet [9] by a plug-in called Openllet 
(http://github.com/Galigator/openllet). In our 
application, we use Pellet to extend the initial graph (the 
ontology and relevant datasets) before the SPARQL 
query is posted. The obtained result is returned as an 
HTML table.  
 

 
Figure 4. Data Properties Hierarchy 

 
Next, we discuss the SPARQL query builder and the 

dependency parsing technique that it is built upon.  
 

4. SPARQL Query Builder 
4.1 Basic Notation and Terminology 

The technique presented in this paper aims to 
build SPARQL queries from a natural language text. It is 
based on idea of syntactic parsing (or dependency 
parsing) which converts a sentence into a syntactic 
structure by building a dependency parse tree [10]. The 
later contains typed labels denoting the grammatical 
relationships for each word in the sentence. To carry out 
this process, we used spaCy [11], which is a 
Python/Cython library for advanced natural language 
processing. spaCy has a fast and accurate syntactic 
dependency parser and a rich API for navigating the 
dependency tree. For readers unfamiliar with spaCy, we 
want to clarify some of the terminology used further in 
the paper. The terms head and child are used to describe 
words connected by a single edge in the dependency tree 
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(https://spacy.io/usage/linguistic-
features#navigating). The term dep denotes an edge 
label describing the type of syntactic relation between 
the child and the head nodes. The syntactic dependency 
scheme described below is adopted from ClearNLP [12].  

In the generated parse tree, each child has only one 
head, but a head may have multiple children. The head 
can be accessed by the Token.head attribute and its 
children can be accessed by the Token.children attribute. 
Token.lefts and Token.rights attributes return sequences 
of syntactic children that occur before and after the 
Token. Token.subtree attribute is used to get the whole 
phrase by its syntactic head, and it returns an ordered 
sequence of tokens. Two data structures, stack and 
visited, are initialized to empty Python lists. These are 
used to store the tokens while traversing the 
dependency tree. 

 
4.2 SPARQL Query Builder: Architecture and 
functionality 

The architecture of the SPARQL query builder 
presented in this paper is shown on Figure 5. 

 

 
 

Figure 5: Query builder architecture 

 
It is intended to support the following types of 

queries: 
 Single fact query. These are over a single RDF 

triple <subject, predicate, object>. The query 

result is either the subject or the object of the 

triple. Example shown on Figure 6.  

 

Figure 6: User interface example of single fact query 

The processing of this query type is shown on 

Figure 7. 

 

Figure 7: Example of a single-fact query 
 

 Single fact with type query. The template for 
this query identifies the type in a single triple. 

Example shown on Figure 8.  
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Figure 8: User interface example of single fact with 

type query 

The processing of this query is shown on Figure 9. 

 
 

Figure 9: Example of a single fact with type query 
 

 ASK queries. These queries expect a true / false 
answer. Example shown on Figure 10. 

 

Figure 10: User interface example of ASK query 

     The processing of this query is shown on Figure 11. 

 
 

Figure 11: Example of an ASK query 

 

Query builder modules are discussed next. 
 

4.2.1 Named Entity Recognition  
Named Entity Recognition (also known as entity 

identification) is a subtask of information extraction that 
seeks to locate and classify atomic elements in a text into 
predefined categories such as person names, locations, 
organizations and more. This step is essential for 
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gathering the entities that serve as input to processing 
algorithms. 

 
4.2.2 Dependency Tree Traversal Algorithm 

The Dependency Tree Traversal (DTT) algorithm 
extracts the predicate by traversing the dependency tree 
generated from the user query. The pseudocode of the 

algorithm is shown on Figures 12.1, 12.2, and 12.3. The 
algorithm requires the following pre-processing steps:  

Step 1: Remove spaces and punctuations from the 
end of the question. 

Step 2: Use regular expressions to check if the 
question contains open and closed parenthesis in which 
case remove the parentheses and the data inside them 
from the question and store it in a Python list. It is 
important to note that removing the parenthesis from 
the question does not change the dependency tree. 

Step 3: Use regular expressions to check if the 
question contains any punctuations. We use a dictionary 
to keep track of the words with punctuations, where the 
key is the word without the punctuation and the value is 
the word with the punctuation. If a word containing an 
apostrophe S (‘s), then the apostrophe S is not removed 
from the user’s question because removing it results in a 
change of the dependency tree. The rest of the 
punctuations are extracted and removed from the user 
question. 

The DTT algorithm first identifies the root node of 
the tree. The root node is a node with no incoming edges. 
Usually, the root token will be the main verb of the 
sentence (although this may not be true for unusual 
sentence structures, such as sentences without a verb). 
The root node is identified by iterating over the tokens 
and selecting the token which head is the same as the 
token itself i.e., token.head = token. 
 

 
Figure 12.1 Dependency tree traversal algorithm 

 

Next, we explore the left and right children of the 
root. When we have a “single fact” or “single fact with 
type” queries, the left and right children will contain the 
predicate of the former and the predicate or the type of 
the latter. Since we do not remove stop words from the 
user’s query, the left and right children can contain such 
words. These are the most common words in any natural 
language sentence, namely the, is, in, for, etc. A function 
filter is created to filter out each child of the left and right 
children whose subtree contains words that are in stop 
words and the entity. The function filter returns two 
lists. If we have a non-empty list for the left and right 
children, then the root is part of the predicate, and flag is 
set to true. If we have an empty list for either left or right 
children, then we add the root to stack and visited. The 
latter are initially set to empty Python lists and are used 
to store tokens while traversing the dependency tree. We 
iterate over each child in the left children and right 
children and add it to stack, if the child contains a word 
that is not in the stop words and the entity. If the flag is 
equal to true, the root word is added to stack and visited. 
The flag is now set to false to avoid having the root word 
added twice to stack and visited.  

 

 
Figure 12.2 Dependency tree traversal algorithm 

 
The algorithm now iterates over the stack until it 

is empty. We get the element that is on the top of the 
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stack and assign it to a variable pointer to check the 
following conditions: 

Condition 1: If the pointer is equal to the root, pop 
an element from stack and visited. If pointer is not in stop 
words, append the element to predicate; else return the 
control to the beginning of the loop. 

Condition 2: If pointer is in visited, pop an element 
from stack and visited. If the element had punctuation 
attached to it before pre-processing, add the punctuation 
back to element and append element to predicate.  

Condition 3: If the above conditions fail, add 
pointer to visited. If pointer contains children, iterate 
over the left and right children of the pointer. If children 
exist, iterate over each child of the children; if the child 
contains a word that is not in stop words and entity, add 
the child to stack. 

 

 
Figure 12.3 Dependency tree traversal algorithm 

 
We can now add the punctuations removed during 

pre-processing back to the predicate. We then remove 
any stop words from the beginning and the end of 
predicate and sort predicate in the right order as they 
appear in the user question. Finally, the predicate is 
converted from the list to a string by joining it by space. 
 
4.2.3 Question Type Classifier 

The Question Type Classifier uses a rule-based 
algorithm to classify the question to a type of the SPARQL 
query. As stated above, our framework currently 
supports the following three types of queries:  

 Single fact. If the question contains only a single 
entity, then it is classified as a single fact (see 
example on Figure 6). 

 Single fact with type. If the question contains 
more than one entity, a rule-based algorithm 
type-checker (pseudocode shown on Figure 13) 
checks whether the question contains a type. 
Extracting the type from the user query, is 
carried out depending on the category of the 

question. We distinguish between (i) questions 
starting with Wh (i.e., what, when, where, who, 
whom, which, whose and why), and (ii) all 
others. For each category, we have defined 
dependency rules to extract the type. 

 ASK. If the question contains more than one 
entity and does not have a type, then the question 
is of type ASK. 

 
Figure 13: The type-checker algorithm 

 
4.2.4 Lexicon 

      The role of the lexicon is to map the vocabularies 
(properties and entities) used in the user query to those 
from the application ontology. There might be 
inconsistencies between the two which we refer to as a 
lexical gap and a semantic gap. The former defines to the 
difference between query and ontology vocabularies, 
while the later refers to the difference between 
expressed information needs and the adopted ontology 
representation. The proposed lexicon component is 
intended to overcome both gaps. We used Sentence-
BERT (SBERT) [13] to compute the sentence 
embeddings of all the properties and entities in the 
ontology and saved the embeddings as a PyTorch Tensor 
(https://pytorch.org/docs/stable/tensors.html). SBERT 
is a modification of the pre-trained BERT network that 
uses Siamese and Triplet networks [13] to derive 
semantically meaningful sentence embeddings that can 
be compared using cosine-similarity. We run the SBERT 
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model with different pooling strategies like MEAN, MAX, 
and CLS, out of which MEAN pooling strategy worked 
well for our semantic textual similarity (STS) [14] task. 
We used cosine similarity as the similarity function. 
Using the SBERT model, we compute the sentence 
embeddings of the predicate and entities extracted from 
the user query and perform a semantic comparison with 
all the property embeddings for the former, and entity 
embeddings for the latter using cosine similarity. We 
sort the similarity scores from the highest to the lowest 
and select the top 5 similar labels. Next, we compute the 
Jaccard similarity coefficient of the label (predicate or 
entity) with the label having the highest cosine similarity 
(most similar label). The Jaccard coefficient 
(https://en.wikipedia.org/wiki/Jaccard_index) 
measures similarity between finite sample sets and is 
defined as the size of the intersection divided by the size 
of the union of the sample sets. If the Jaccard similarity is 
greater than the 0.7 thresholds, we assign the most 
similar label to the label, else we check if the label is 
found in the aliases of the similar labels.  
 

 
Figure 14: Lexicon function 

If both conditions fail, we use SBERT to get the 
embeddings for the user question and do a cosine 
similarity with the similar labels  and   select   the   label   
with   the   highest similarity score and return the label. 
This process is repeated for all the entities. Pseudocode 
of the Lexicon function is shown on Figure 14. 
 
4.2.5 Query Constructor 

This module uses the information provided by 
Lexicon (predicate and entities) and Question Type 
Classifier modules to build the SPARQL query. Each 
question type has its own SPARQL template. The role of 
Query Constructor is to build the SPARQL query and to 
return the SPARQL query results to the user. 

 
5. Conclusion 

This article presents a novel technique for 
translating natural language queries into SPARQL 
queries. The framework implementing it, the SPARQL 
query builder, uses a dependency rule-based algorithm 
to convert user queries to “user” triples. These are 
validated by the lexicon and further converted into RDF 
triples to construct a SPARQL query that fetches the 
answers from the underlying ontology via a JAVA-based 
application processing module. The advantage of the 
presented technique is that it requires neither any 
laborious feature engineering, nor does it require any 
complex model mapping of a natural language question 
to a query template and then to a SPARQL query. Since 
the dependency tree traversal and the type-checker 
algorithms do not require any domain specific 
knowledge the proposed framework can be applied to 
arbitrary domains.  

In our future work, we plan to add additional 
functionality to support complex SPARQL queries and 
evaluate the system on open-domain datasets such as 
LC-QuAD (http://lc-quad.sda.tech/lcquad1.0.html). 
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