
Avestia Publishing

Journal of Machine Intelligence and Data Science (JMIDS)

Volume 2, Year 2021

ISSN: 2564-3282

DOI: 10.11159/jmids.2021.006

Date Received: 2021-09-28

Date Accepted: 2021-10-08

Date Published: 2021-11-10

44

Natural Language to SPARQL Query Builder for
Semantic Web Applications

Neli Zlatareva, Devansh Amin
Department of Computer Science

Central Connecticut State University
1615 Stanley Street, New Britain, CT 06050, USA
zlatareva@ccsu.edu; devansh.amin@my.ccsu.edu

Abstract - SPARQL is a powerful query language for an ever-
growing number of Semantic Web applications. Using it,
however, requires familiarity with the language which is not to
be expected from the general web user. This drawback has led to
the development of Question-Answering (QA) systems that
enable users to express their information needs in natural
language. This paper presents a novel dependency-based
framework for translating natural language queries into
SPARQL queries, which is built on the idea of syntactic parsing.
The translation process involves the following steps: extraction
of the entities, extraction of the predicate, categorization of the
query’s type, resolution of lexical and semantic gaps between
user query and domain ontology vocabulary, and finally
construction of the SPARQL query. The proposed framework was
tested on our closed-domain student advisory application
intended to provide students with advice and recommendations
about curriculum and scheduling matters. The advantage of our
approach is that it requires neither any laborious feature
engineering, nor complex model mapping of a query expressed
in natural language to a SPARQL query template, and thus it can
be easily adapted to a variety of applications.

Keywords: Information Retrieval, Natural Language
Processing, Semantic Web, SPARQL, Question-
Answering Systems.

© Copyright 2021 Authors - This is an Open Access article
published under the Creative Commons Attribution
License terms (http://creativecommons.org/licenses/by/3.0).
Unrestricted use, distribution, and reproduction in any medium
are permitted, provided the original work is properly cited.

1. Introduction
The use of Linked Data technologies for building

Semantic Web applications has grown exponentially in
the last decade. These new technologies are radically

changing current web services by allowing users to post
personalized queries directly to digital libraries of
various information resources and databases. A huge
number of these resources are interconnected via the
Linked Open Data Cloud (https://www.lod-cloud.net/)
and provide users with direct access via SPARQL
endpoints to thousands of RDF/RDFS datasets. The
bottleneck of this technology is that users must be
familiar with the query language SPARQL
(https://www.w3.org/TR/sparql11-query/) to place a
query. Even the most user-friendly SPARQL endpoints,
such as DBPedia (https://dbpedia.org/sparql), suggest
some basic knowledge on writing SPARQL queries. More
sophisticated queries, or federated queries over multiple
SPARQL endpoints, require in-depth familiarity with
SPARQL which is not to be expected from the users of
Semantic Web applications. This difficulty is well
recognized in the Semantic Web community and various
techniques were suggested to address it. These
techniques can be divided into two categories:
information extraction and semantic parsing. The former
aim to identify the main entities of the user’s query and
map them to ontology relations, most commonly by
using pre-defined or automatically generated templates
[1, 2, 3]. Semantic parsing techniques extract the
meaning of the query by converting it into a syntactic
structure [4, 5]. The main difficulty in this process is
recognising the user’s intention expressed in the natural
language query so that it can be adequately translated
into a SPARQL query.

This article presents a novel technique for
converting user queries stated in natural language into
SPARQL templates by dividing the translation process
into sub-tasks that can be independently handled and

about:blank
about:blank
about:blank
about:blank

 45

processed by means of rule-based algorithms. The
proposed technique was tested on a prototype Semantic
Web application intended to provide students in our
department with information and advice about
programs, courses, faculty, etc. with the ultimate goal to
serve as a recommender system for student advising and
course registration. Currently, all this information is
scattered among multiple websites and may require
extensive browsing to collect it. Furthermore, the
integration and interpretation of collected information is
up to the student and it may take additional coordination
with a faculty advisor to obtain the desired query result.

The article is structured as follows. In Section 2, we
briefly discuss the RDF data model to provide some
background for readers not familiar with the Semantic
Web. The basic functionality of the student advisory
application which was used to test the proposed
technique is outlined in Section 3. Section 4 introduces
the SPARQL query builder, and each one of the five
subtasks involved in the translation process is discussed
in detail and illustrated with examples. We conclude
with a brief statement of our future plans.

2. RDF Data Model and Semantic Web
Technologies

By utilizing Semantic web technologies, we can
build applications which functionality goes beyond the
traditional web-based search that intelligent assistants
such as Siri, Cortana, or Google Assistant are intended to
perform. This, however, may require building a new web
infrastructure by converting needed information into a
machine understandable format known as Resource
Description Framework (RDF)
(http://www.w3.org/RDF). RDF is a universal data
model, which basic building block is the triple, a
statement defining a relation between two web
resources such as “Jones teaches Math101”. Here Jones
and Math101 are called the subject and the object of the
triple and teaches is the predicate expressing the relation
between them. Each element of the triple <subject,
predicate, object> is identified by its unique
International Resource Identifier (IRI) (except for the
object, which can also be a literal of any XML datatype)
thus making it globally accessible across the web.
Problem domains are described as sets of triples which
represent directed graphs. Independent graphs can be
easily merged via common nodes (subjects or objects of
triples) thus forming a linked data network. Processing
linked data is based on the following linked data
principles [7]:

1. Use unique identifiers, IRIs, to name every entity
(resource), physical or abstract, that exists in the
world.

2. Use HTTP IRIs to allow users to look up those
resources to gather information about them.

3. When looking up an IRI, use RDF-based
representation and SPARQL query language to
access that IRI.

4. Include links to associated IRIs to allow for
automatic discovery of related data.

Implementation of these principles allows for
effortless management of large quantities of linked data
and facilitates their integration and processing. The later
is performed by the SPARQL Protocol and RDF Query
Language (SPARQL) (http://www.w3.org/TR/rdf-
sparql-query/). SPARQL is a very rich language offering
four different query forms depending on the expected
result. The SELECT query uses a pattern matching
algorithm to retrieve specific information, while
DESCRIBE and CONSTRUCT queries return RDF graphs
that can be combined with other graphs for further
processing. ASK query is similar to SELECT query in that
it also utilizes pattern matching, but it answers whether
there is at least one match or no match at all.

RDF provides the data model, but the Web
Ontology Language (OWL)
(http://www.w3.org/TR/owl-features/) is the current
W3C recommendation supporting the development of
Semantic Web applications. Building such applications is
similar to the development of Knowledge-Based
Systems. The knowledge base, called here the ontology,
is defined as “… an explicit, formal specification of a
shared conceptualization” [7]. The most notable
difference between Semantic Web ontologies and
traditional knowledge bases is that knowledge bases
typically reflect the view of a domain expert, or a group
of experts, while ontologies tend to reflect the consensus
view of the community expressed by precisely defined
terms. Ontologies also resemble relational database
models, but in addition to relations between data they
implicitly define formal rules of inference which allow
data processing to be carried out by automated
reasoners. This in turn, expends the scope of services
provided by Semantic Web applications to allow for
personalized response to a broad range of user queries.
Semantic Web reasoners are based on the so-called
Description Logics (DLs) [8]. These are decidable
fragments of first-order logic intended to achieve
favourable trade-offs between expressivity and
scalability. Between themselves, DLs defer by the set of

about:blank
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/

 46

constructors they utilize to represent data and perform
reasoning. One of the most expressive DLs, called
SROIQ(D), underlines the latest version of OWL, OWL 2.
It defines an ontology as a triple <T-Box, A-Box, R-Box>,
where:

 The T-Box defines domain terminology
expressed as a hierarchy of classes related by
subsumption, C ⊑ D, and equivalence, C D,
relations. It also includes a disjunction
constructor, a special class expression Self:
S.Self, and allows for qualified number
restrictions n S.C and n S.C to express
statements such as “a course with at least/at
most 6 graduate students”.

 The A-Box defines the domain description stating
class membership of individuals (a C),
property relations between individuals (<a, R,
b>), and equality relations between individuals
(a = b).

 The R-box defines complex domain relations as
combination of properties, R1 R2 ⊑ S, allowing
statements such as “hasTakenCS151
hasTakenCS152 ⊑ canTakeCS153”, as well as
describes properties of properties such as
inverse properties, symmetry, reflexivity,
irreflexively and disjunctiveness of properties.

The next section outlines a prototype application
utilizing the described technologies, which was used to
validate the proposed natural language to SPARQL query
builder technique.

3. Student Advisory Application: design and
functionality

The core of the student advisory application is a
bot intended to provide students with enhanced
experience when seeking information about programs,
courses, faculty, etc. offered by our department. Domain
knowledge utilized by the advisory bot integrates
information from multiple websites such as University
catalogue, course scheduling system, departmental
website, and more. Currently, to find the needed
information a student would browse these different
websites and at the end may not be able to find the
answer they were looking for not necessarily because
the information was not there, but because it might not
be easily accessible.

As stated in Section 2, Semantic web technologies
allow to conventionalise integration of different

information resources by “merging” them into a single
linked data graph. To illustrate the functionality of the
application, consider the following scenario. A transfer
student is looking for courses to enrol given that she: 1.)
has credit for CS 151, CS 152, and CS 253; 2.) can only
take courses on Mondays and Wednesdays after 3 pm;
3.) is a full-time student but wants to take only 4 courses;
4.) prefers to take core courses rather than electives to
ensure that she is on track to graduate in two years; and
5.) wants to make sure that all prerequisites for senior
level courses are satisfied.

 A single SPARQL query on a linked data network
will be sufficient to address the example scenario. The
problem, however, is that the student is not expected to
know SPARQL. Instead, a user-friendly interface should
be available to translate user query into one or more
SPARQL queries retrieving the relevant information. The
SPARQL query builder described in Section 4 is intended
to address this task.

The architecture of the student advisory
application is shown on Figure 1. The output from the
SPARQL query builder is processed by a Java-based
module which uses Apache Jena API
(http://jena.apache.org) and Pellet reasoner [9] to
acquire and integrate relevant domain information from
the backend repository containing the domain ontology
and the datasets.

Figure 1. Student advisory application

architecture

To build the domain ontology (the T-Box), we used
Protégé (http://www.protege.stanford.edu), which
currently is the best-known open-source ontology
editor. The illustrate the scope of the underlying domain,
we show the class hierarchy, object, and data properties
hierarchies on Figures 2, 3, and 4, respectively.

The domain ontology is stored in a Turtle format
which can be easily processed by the Java application

http://www.protege.stanford.edu/

 47

module. Datasets containing information from various
web resources (the A-Box) are also stored as Turtle files.

Figure 2. Class hierarchy

Figure 3. Object properties hierarchy

The ontology and the datasets are processed using
Apache Jena API which provides extensive Java libraries
for managing RDF datasets and OWL ontologies and
allows for easy integration of SPARQL queries. In
addition, Jena allows for integration of OWL 2 reasoner
Pellet [9] by a plug-in called Openllet
(http://github.com/Galigator/openllet). In our
application, we use Pellet to extend the initial graph (the
ontology and relevant datasets) before the SPARQL
query is posted. The obtained result is returned as an
HTML table.

Figure 4. Data Properties Hierarchy

Next, we discuss the SPARQL query builder and the

dependency parsing technique that it is built upon.

4. SPARQL Query Builder
4.1 Basic Notation and Terminology

The technique presented in this paper aims to
build SPARQL queries from a natural language text. It is
based on idea of syntactic parsing (or dependency
parsing) which converts a sentence into a syntactic
structure by building a dependency parse tree [10]. The
later contains typed labels denoting the grammatical
relationships for each word in the sentence. To carry out
this process, we used spaCy [11], which is a
Python/Cython library for advanced natural language
processing. spaCy has a fast and accurate syntactic
dependency parser and a rich API for navigating the
dependency tree. For readers unfamiliar with spaCy, we
want to clarify some of the terminology used further in
the paper. The terms head and child are used to describe
words connected by a single edge in the dependency tree

http://github.com/Galigator/openllet

 48

(https://spacy.io/usage/linguistic-
features#navigating). The term dep denotes an edge
label describing the type of syntactic relation between
the child and the head nodes. The syntactic dependency
scheme described below is adopted from ClearNLP [12].

In the generated parse tree, each child has only one
head, but a head may have multiple children. The head
can be accessed by the Token.head attribute and its
children can be accessed by the Token.children attribute.
Token.lefts and Token.rights attributes return sequences
of syntactic children that occur before and after the
Token. Token.subtree attribute is used to get the whole
phrase by its syntactic head, and it returns an ordered
sequence of tokens. Two data structures, stack and
visited, are initialized to empty Python lists. These are
used to store the tokens while traversing the
dependency tree.

4.2 SPARQL Query Builder: Architecture and
functionality

The architecture of the SPARQL query builder
presented in this paper is shown on Figure 5.

Figure 5: Query builder architecture

It is intended to support the following types of

queries:
 Single fact query. These are over a single RDF

triple <subject, predicate, object>. The query

result is either the subject or the object of the

triple. Example shown on Figure 6.

Figure 6: User interface example of single fact query

The processing of this query type is shown on

Figure 7.

Figure 7: Example of a single-fact query

 Single fact with type query. The template for
this query identifies the type in a single triple.

Example shown on Figure 8.

about:blank#navigating
about:blank#navigating

 49

Figure 8: User interface example of single fact with

type query

The processing of this query is shown on Figure 9.

Figure 9: Example of a single fact with type query

 ASK queries. These queries expect a true / false
answer. Example shown on Figure 10.

Figure 10: User interface example of ASK query

 The processing of this query is shown on Figure 11.

Figure 11: Example of an ASK query

Query builder modules are discussed next.

4.2.1 Named Entity Recognition
Named Entity Recognition (also known as entity

identification) is a subtask of information extraction that
seeks to locate and classify atomic elements in a text into
predefined categories such as person names, locations,
organizations and more. This step is essential for

 50

gathering the entities that serve as input to processing
algorithms.

4.2.2 Dependency Tree Traversal Algorithm

The Dependency Tree Traversal (DTT) algorithm
extracts the predicate by traversing the dependency tree
generated from the user query. The pseudocode of the

algorithm is shown on Figures 12.1, 12.2, and 12.3. The
algorithm requires the following pre-processing steps:

Step 1: Remove spaces and punctuations from the
end of the question.

Step 2: Use regular expressions to check if the
question contains open and closed parenthesis in which
case remove the parentheses and the data inside them
from the question and store it in a Python list. It is
important to note that removing the parenthesis from
the question does not change the dependency tree.

Step 3: Use regular expressions to check if the
question contains any punctuations. We use a dictionary
to keep track of the words with punctuations, where the
key is the word without the punctuation and the value is
the word with the punctuation. If a word containing an
apostrophe S (‘s), then the apostrophe S is not removed
from the user’s question because removing it results in a
change of the dependency tree. The rest of the
punctuations are extracted and removed from the user
question.

The DTT algorithm first identifies the root node of
the tree. The root node is a node with no incoming edges.
Usually, the root token will be the main verb of the
sentence (although this may not be true for unusual
sentence structures, such as sentences without a verb).
The root node is identified by iterating over the tokens
and selecting the token which head is the same as the
token itself i.e., token.head = token.

Figure 12.1 Dependency tree traversal algorithm

Next, we explore the left and right children of the
root. When we have a “single fact” or “single fact with
type” queries, the left and right children will contain the
predicate of the former and the predicate or the type of
the latter. Since we do not remove stop words from the
user’s query, the left and right children can contain such
words. These are the most common words in any natural
language sentence, namely the, is, in, for, etc. A function
filter is created to filter out each child of the left and right
children whose subtree contains words that are in stop
words and the entity. The function filter returns two
lists. If we have a non-empty list for the left and right
children, then the root is part of the predicate, and flag is
set to true. If we have an empty list for either left or right
children, then we add the root to stack and visited. The
latter are initially set to empty Python lists and are used
to store tokens while traversing the dependency tree. We
iterate over each child in the left children and right
children and add it to stack, if the child contains a word
that is not in the stop words and the entity. If the flag is
equal to true, the root word is added to stack and visited.
The flag is now set to false to avoid having the root word
added twice to stack and visited.

Figure 12.2 Dependency tree traversal algorithm

The algorithm now iterates over the stack until it

is empty. We get the element that is on the top of the

 51

stack and assign it to a variable pointer to check the
following conditions:

Condition 1: If the pointer is equal to the root, pop
an element from stack and visited. If pointer is not in stop
words, append the element to predicate; else return the
control to the beginning of the loop.

Condition 2: If pointer is in visited, pop an element
from stack and visited. If the element had punctuation
attached to it before pre-processing, add the punctuation
back to element and append element to predicate.

Condition 3: If the above conditions fail, add
pointer to visited. If pointer contains children, iterate
over the left and right children of the pointer. If children
exist, iterate over each child of the children; if the child
contains a word that is not in stop words and entity, add
the child to stack.

Figure 12.3 Dependency tree traversal algorithm

We can now add the punctuations removed during

pre-processing back to the predicate. We then remove
any stop words from the beginning and the end of
predicate and sort predicate in the right order as they
appear in the user question. Finally, the predicate is
converted from the list to a string by joining it by space.

4.2.3 Question Type Classifier

The Question Type Classifier uses a rule-based
algorithm to classify the question to a type of the SPARQL
query. As stated above, our framework currently
supports the following three types of queries:

 Single fact. If the question contains only a single
entity, then it is classified as a single fact (see
example on Figure 6).

 Single fact with type. If the question contains
more than one entity, a rule-based algorithm
type-checker (pseudocode shown on Figure 13)
checks whether the question contains a type.
Extracting the type from the user query, is
carried out depending on the category of the

question. We distinguish between (i) questions
starting with Wh (i.e., what, when, where, who,
whom, which, whose and why), and (ii) all
others. For each category, we have defined
dependency rules to extract the type.

 ASK. If the question contains more than one
entity and does not have a type, then the question
is of type ASK.

Figure 13: The type-checker algorithm

4.2.4 Lexicon

 The role of the lexicon is to map the vocabularies
(properties and entities) used in the user query to those
from the application ontology. There might be
inconsistencies between the two which we refer to as a
lexical gap and a semantic gap. The former defines to the
difference between query and ontology vocabularies,
while the later refers to the difference between
expressed information needs and the adopted ontology
representation. The proposed lexicon component is
intended to overcome both gaps. We used Sentence-
BERT (SBERT) [13] to compute the sentence
embeddings of all the properties and entities in the
ontology and saved the embeddings as a PyTorch Tensor
(https://pytorch.org/docs/stable/tensors.html). SBERT
is a modification of the pre-trained BERT network that
uses Siamese and Triplet networks [13] to derive
semantically meaningful sentence embeddings that can
be compared using cosine-similarity. We run the SBERT

about:blank

 52

model with different pooling strategies like MEAN, MAX,
and CLS, out of which MEAN pooling strategy worked
well for our semantic textual similarity (STS) [14] task.
We used cosine similarity as the similarity function.
Using the SBERT model, we compute the sentence
embeddings of the predicate and entities extracted from
the user query and perform a semantic comparison with
all the property embeddings for the former, and entity
embeddings for the latter using cosine similarity. We
sort the similarity scores from the highest to the lowest
and select the top 5 similar labels. Next, we compute the
Jaccard similarity coefficient of the label (predicate or
entity) with the label having the highest cosine similarity
(most similar label). The Jaccard coefficient
(https://en.wikipedia.org/wiki/Jaccard_index)
measures similarity between finite sample sets and is
defined as the size of the intersection divided by the size
of the union of the sample sets. If the Jaccard similarity is
greater than the 0.7 thresholds, we assign the most
similar label to the label, else we check if the label is
found in the aliases of the similar labels.

Figure 14: Lexicon function

If both conditions fail, we use SBERT to get the
embeddings for the user question and do a cosine
similarity with the similar labels and select the label
with the highest similarity score and return the label.
This process is repeated for all the entities. Pseudocode
of the Lexicon function is shown on Figure 14.

4.2.5 Query Constructor

This module uses the information provided by
Lexicon (predicate and entities) and Question Type
Classifier modules to build the SPARQL query. Each
question type has its own SPARQL template. The role of
Query Constructor is to build the SPARQL query and to
return the SPARQL query results to the user.

5. Conclusion

This article presents a novel technique for
translating natural language queries into SPARQL
queries. The framework implementing it, the SPARQL
query builder, uses a dependency rule-based algorithm
to convert user queries to “user” triples. These are
validated by the lexicon and further converted into RDF
triples to construct a SPARQL query that fetches the
answers from the underlying ontology via a JAVA-based
application processing module. The advantage of the
presented technique is that it requires neither any
laborious feature engineering, nor does it require any
complex model mapping of a natural language question
to a query template and then to a SPARQL query. Since
the dependency tree traversal and the type-checker
algorithms do not require any domain specific
knowledge the proposed framework can be applied to
arbitrary domains.

In our future work, we plan to add additional
functionality to support complex SPARQL queries and
evaluate the system on open-domain datasets such as
LC-QuAD (http://lc-quad.sda.tech/lcquad1.0.html).

References
[1] Dimitrakis E., K. Sgontzos, M. Mountantonakis, and Y.

Tzitzikas - Enabling Efficient Question Answering over

Hundreds of Linked Datasets. Post-proceedings of the

13th International Workshop on Information Search,

Integration, and Personalization (ISIP’2019), 2019.

[2] Abujabal A., M. Yahya, M. Riedewald, and G. Weikum.

- Automated template generation for question answering

over knowledge graphs. Proceedings of the 26th

international conference on world wide web.

International World Wide Web Conferences Steering

Committee, 2017.

about:blank
about:blank

 53

[3] Diefenbach D., K. Singh, and P. Maret. -WDAqua-core1:

A Question Answering service for RDF Knowledge

Bases. WWW’18: Companion Proceedings of the The

Web Conference, 2018.

[4] Shaik S., P. Kanakam, S. Hussain,and D. Suryanarayana

- Transforming Natural Language Query to SPARQL for

Semantic Information Retrieval, International Journal of

Engineering Trends and Technology (IJETT), Volume-

41 Number-7, 2016.

[5] [Online] Available: Semantic Parsing Natural Language

into SPARQL: Improving Target Language

Representation with Neural Attention (groundai.com)

[6] Berners-Lee T. Linked Data - Design Issues. [Online]

Available:

 http://www.w3.org/DesignIssues/LinkedData.html,

 2006.

[7] Gruber, T. – A Translation Approach to Portable

Ontology Specifications. Knowledge Acquisition, 5(2),

pp. 199-220.

[8] Baader, F., Calvanese, D., McGuinness, D., Nardi, D.,

and Patel-Schneider, P. (editors) The Description Logic

Handbook. Theory, implementation, and applications.

2010, Cambridge University Press.

[9] Sirin E., Parsia B., Cuenca Grau B., Kalyanpur A., Katz

Y. Pellet: A Practical OWL-DL Reasoner,

http://www.cs.ox.ac.uk/people/bernardo.cuencagrau/p

ublications/PelletDemo.pdf

[10] Honnibal M, Johnson M. - An improved non-monotonic

transition system for dependency parsing. In

Proceedings of the 2015 Conference on Empirical

Methods in Natural Language Processing, 2015:1373–

1378.

[11] “spacy.io,” 2016. [Online]. Available: https://spacy.io

[12] Choi J. and M. Palmer - Guidelines for the CLEAR

Style Constituent to Dependency Conversion, 2012.

[13] Reimers, N. and I. Gurevych - Sentence-BERT:

Sentence Embeddings using Siamese BERT-Networks.

3973-3983. 10.18653/v1/D19-1410. 2019.

[14] Agirre E., D. Cer, M. Diab, A. Gonzalez-Agirre, and

Weiwei Guo. *sem 2013 shared task: Semantic textual

similarity, including a pilot on typed similarity. In

*SEM 2013: The Second Joint Conference on Lexical

and Computational Semantics, 2013, Association for

Computational Linguistics

about:blank#:~:text=Semantic%20parsing%20is%20the%20process%20of%20mapping%20a,to%20an%20ontology%20database%20in%20the%20SPARQL%20language.
about:blank#:~:text=Semantic%20parsing%20is%20the%20process%20of%20mapping%20a,to%20an%20ontology%20database%20in%20the%20SPARQL%20language.
about:blank#:~:text=Semantic%20parsing%20is%20the%20process%20of%20mapping%20a,to%20an%20ontology%20database%20in%20the%20SPARQL%20language.
http://www.w3.org/DesignIssues/LinkedData.html
http://www.cs.ox.ac.uk/people/bernardo.cuencagrau/publications/PelletDemo.pdf
http://www.cs.ox.ac.uk/people/bernardo.cuencagrau/publications/PelletDemo.pdf
about:blank

