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Abstract – In this paper a framework for short-term 
microscopic prediction of traffic participants’ motion is 
presented and is deployed in a roundabout simulation using 
SUMO for evaluation. This framework consists of a dynamic 
Bayesian network where expert knowledge is incorporated and 
a continuous variable prediction module (CVPM) where 
continuous variable prediction is handled by a sequential neural 
network models. The DBN topology was designed to  
To have a comparison, three CVPM models were experimented 
with: recurrent neural network (RNN), gated recurrent unit 
(GRU), and long short-term memory network (LSTM). The 
results show promising 0.036 RMSE and higher than 0.895 
correlation between 10-second predictions and actual data for 
the worst case.  
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1. Introduction and Previous Work
Autonomous driving has been on the receiving end 

of a lot of attention and interest with the resurgence of 
artificial intelligence (AI) techniques due to more potent 
computing hardware. Although many of the artificial 
intelligence techniques today root in research conducted 
decades ago, they have only become viable and practical 
options in the past few years with modern computers 

orders of magnitude faster than those of the era where 
these techniques were conceptualized. The reason 
autonomous driving is so intertwined with AI, owes to 
the complexity of the problem. It would be near 
impossible to create a definitive set of rules that would 
undertake all the navigating and manoeuvring tasks for 
a vehicle. To put that into perspective, recent 
publications in vehicle systems using classical 
controllers can be examined. These studies [1, 2, 3, 4] are 
perfect examples of the limits of what even modern 
analytical controllers can achieve. While being robust 
and even useful in many driving scenarios, they do not 
provide any versatility and fail in case of any deviation 
from the situations they are designed for. These 
deviation scenarios are plentiful in normal day-to-day 
driving. Adding fuel to the fire, is the fact that automated 
vehicles are expected to be deployed alongside human 
drivers as they will not replace their human driven 
counterparts overnight, in which case erratic behaviour 
of human drivers and the inappropriate infrastructure 
are two major impediments. 

Having realized the challenges, one might ask 
considering all the encumbrance, is autonomous driving 
research even worth it? According to statistics released 
by U.S. National Highway Traffic Safety Administration 
(NHTSA) [5, 6] in 2015, the surveys indicate that out of 
the 2,189,000 reported traffic accidents, 94% ± 2.2% 
were due to human error, and grievously 35,092 were 
fatal. The same document points out that 41% ± 2.2% 
were due to human recognition error which has 
statistical significance. The promise of automated 
driving can be enumerated as: 
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1) Affordable long-range transportation for the 

public.  

2) Personal transportation for individuals with 

disabilities. 

3) Diminishing of traffic casualties associated with 

human error.  

4) Minimization of harmful exhaust emissions. [7] 

Having established the challenges of automated 
driving, one solution is tackling the problem with 
empirical methods such as machine-learning/AI 
techniques. The question then becomes what techniques 
work best, as there are a variety of techniques available. 
Studies such as one by Zhang et al. [8] uses chaining 
neural networks to predict longitudinal motion of 
vehicles using drive-cycles but does not consider context 
or lateral motion which are two integral parts of driving. 
Similarly, in the study conducted by Sun et al. [9] while 
multiple CVPMs are compared, the approach does not 
consider multiple variables and extension of the same 
approach for multiple variables will not encompass the 
dependencies between those variables. Likewise, 
Thorsell’s [10] approach can make single drive cycle 
predictions without considering spatial information. 
There are many other studies following the same 
principles, and that is what makes this study unique. This 
approach considers context, can adapt to the situation, 
and the predictions can be done on any variable while 
their dependencies are conserved. However, for the sake 
of ease of comparison, this study also focuses on velocity 
predictions. This study builds on a suite of studies that 
focus on different driving scenarios, adapting a new 
solution for every situation. Roundabouts are subject to 
a new emergence in developing urban landscape as they 
provide a passive, smarter way to control the traffic as 
opposed to traffic light-controlled intersections. 
Roundabouts are adaptive to the flow and temporal 
changes in traffic, but in turn poses a threat to 
inexperienced drivers who are not acquainted with 
roundabout driving, often causing a chain reaction in 
traffic accidents. The following sections will go over the 
basics and the background of the approach, then the 
strategy is discussed, and finally results are declared and 
discussed, followed by conclusions and future work. 
 

2. Background 
This study builds on dynamic Bayesian network as 

a core of its hybrid approach. DBN is a powerful 
probabilistic inference tool that can incorporate traffic 

rules directly from expert knowledge, however, to 
compensate for its lack of ability to make accurate 
predictions on continuous variables, a contractor data-
driven sequence prediction method, dubbed CVPM was 
used. Figure 1illustrates an overview. 

 

 

 
In Figure 1, the case of controller is a hypothetical 

one and as it will be discussed in the conclusion, this 
prediction strategy is a prime target to be used with 
model predictive controllers (MPCs) to provide them 
with accurate state predictions. The other main 
components are the DBN, and the CVPM. 

 

2. 1. Dynamic Bayesian Network 
A Bayesian network [11] is a graphical 

representation of probabilistic variables where the 
connections serve as dependencies between those 
variables. In a driving context, most of the variables can 
be categorized as probabilistic and their values can be 
classified into mixture distributions. As an example, a 
traffic light signal has 3 states (4 if considering advanced 
left). Similarly, ‘current lane of driving’ has a limited 
number of states. Even in some cases, where the actual 
value of a continuous variable is not critical, continuous 
variables can be turned into a mixture distribution by 
introducing semantic rules. For instance, for a variable 
such as distance, anything past a threshold can be 
dubbed “far” and below that threshold “near”. As far as 
mixture distributions and discrete variables are 
concerned, DBN is a powerful tool that can obtain 
likelihood of each variable taking a specific state given a 
set of conditions. As mentioned in the introduction, the 
purpose of the perception middleware is to be able to 
understand traffic participants behaviour and 
incorporate expert knowledge into understanding the 
environment. This approach is replicating the learning 
process of driving for a human. A human driver is not 
adequately equipped to be able to measure distances and 
speeds numerically but will always know, semantically, 
whether an object is too far or near, or too fast or slow. 

Figure 1 Overview of the method 
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Also, a human driver by knowledge and experience 
knows that the lane in which a vehicle enters an 
intersection in will govern its destination. There is 
always a degree of uncertainty, but the human driver can 
adapt their initial assumption if given a set of 
observations. 

Bayesian networks can be classified as expert 
systems in the sense that the topology can be defined by 
an expert which will provide the network with an initial 
understanding of the relationship between variables. 
They are also a data-driven approach that can learn from 
large datasets quickly. The dataset will be stored as sets 
of Gaussian normal distributions of P(A|Pa(A)), where A 
is a probabilistic variable and Pa(A) is the set of its 
parents (i.e., set of variables with an edge toward A). 
Once fully learned, any joint or conditional probability 
between variables can be computed. The learning 
process in Bayesian networks is done through EM 
algorithm, a descendent of the forward-backward 
algorithm. In this algorithm a set of Gaussian normal 
distributions are fitted to mixture distributions by 
generating n random Gaussian distributions, finding the 
likelihood of each sample belonging to each distribution 
and then updating the distribution properties based on 
classed samples. [12] DBNs are Bayesian networks with 
temporal nodes which are variables with values from the 
next time-slice in the training. However, not every 
variable in a driving context can be represented as a 
mixture distribution. Variables such as speed are 
continuous, and their value is often desired. DBN is not 
adequately equipped to make predictions for continuous 
variables, hence there is the need for a CVPM. 

 
2. 2. Continuous Variable Prediction Module 

The continuous variable prediction module can be 
any data-driven sequence prediction method. In 
machine learning realm, primitively a feed-forward 
neural network can be equipped with a feedback loop 
and unit delays to become a recurrent neural network 
(RNN). An RNN can then be trained to take a short 
history of the variable as the input and produce 
predictions for the next time slice. By repeating the cycle, 
assuming the predicted value as the true current value 
and cascading the history one step back, each the 
prediction can be extended to an arbitrary horizon. 
Although it is common knowledge that as the horizon 
becomes larger the accuracy suffers because of the 
compounding effect of the errors.  

RNNs are known to struggle with the vanishing 
gradient problem. The vanishing gradient problem is, in 

essence the stoppage of training due to the shrinking 
error gradient in the back-propagation algorithm. The 
opposite of gradient explosion problem is where the 
large gradient will cause the training to diverge from the 
global optimum. A solution to this problem is using 
modified recurrent neural networks such as the gated 
recurrent unit networks (GRU), or long short-term 
memory networks (LSTM). The main difference between 
these modified versions versus the vanilla RNN is 
presence of trainable gates. These gates named forget, 
input, and output for LSTM, and reset, and update, for 
GRU, control the flow of data (and cell state for LSTM) to 
segregate and prioritize important new information. 
This ability is specifically useful for cases such as natural 
language processing or visual target tracking where 
parts of the input are ineffectual. Though, it is important 
to note, by adding these trainable gates, the training of a 
network becomes slower, and most likely, if the RNN 
does not run into the aforementioned problems, epoch-
for-epoch yields little accuracy in comparison. In other 
words, it is expected for RNN to be the most efficient 
technique of the bunch in absence of 
vanishing/exploding gradient problem.  

 
3. Implementation Strategy and Results 

As mentioned in the previous section, the 
approach taken in this study is a data-driven one. The 
first step toward developing a data-driven prediction 
strategy is to understand the dataset and know what 
variables are available to work with. As available 
datasets are often lacking in useful data as data collection 
is generally time consuming and difficult to the point 
where it is completely implausible, the refuge is to 
simulation. In this study, a simulation environment was 
implemented in SUMO [13]. To clarify, the only 
difference between using real data and simulation for the 
case of making predictions is extra pre, and post 
processing steps which are trivial to the core of the 
prediction methodology. However, it is important to 
note, the previous statement only applies to law-abiding 
norm. If the networks are not trained for car crashes, or 
aggressive manoeuvres, they are not able to predict such 
occurrences. 

 

3. 1. Simulation in SUMO 
The scope of this study is roundabout driving 

which is emerging in developing cities. SUMO does not 
support roundabouts natively, so the environment was 
created using a number of road sections connected via 
zippers in a circular shape. The increased number or 
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zippers also acts as a lane-change preventing solution for 
inside the roundabout. In the considered roundabout, 
the priority for travellers has been increased so that the 
simulation is as close to reality as possible. Each arm has 
extended for 500 meters as two lanes with a different 
traffic flow density to introduce variations into the 
traffic. A total of 16 flows were introduced at the end of 
every arm, one introducing one vehicle at every time 
step on the west side, one introducing one vehicle at 
every 2 time-steps on the south side, one introducing one 
vehicle at every 3 time-steps on the north side and one 
introducing one vehicle at every 4 time-steps on the east 
side. In other words, the opposing sides have an equal 
total flow but placing the observer at each side would 
produce variations in the data. The flows have combined 
random trip destinations so that from every arm the 
flows generated will travel every four arms, but the 
sequence in which each vehicle is spawned into the 
simulation is random. A snapshot of the simulation 
environment is illustrated in Figure 2. 

 

 
Figure 2 Snapshot from simulation environment 

 

3. 2. Dynamic Bayesian Network Topology and 
Variables 

The data extracted from SUMO has information 
about positions, speeds, and lanes of the 3000 vehicles in 
the simulation. The position information can be fused 
with the map of the environment to obtain relative 
positions of vehicles conserving the traffic rules. Due to 
the extreme size of the dataset, spectral clustering was 
performed on the set of vehicle pairs that were co-
present in the simulation. In a 3000 × 3000 sparce grid 
of cells, the cells with data were rearranged to the closest 

configuration to a diagonal matrix. This rearrangement 
of data allows for much shorter processing times when 
extracting data for the DBN. A visual representation of 
the spectral clustering can be viewed in  

         Figure 3 and                        Figure 4. Each white 
pixel in the grid represents co-present vehicles and the 
black background represents empty fields. The spectral 
clustering rearranges the order of vehicles such that a 
rolling window captures the vehicle in the simulation 
environment. In other words, it sorts the vehicles in a 
quasi-chronological order in the direction of the matrix’s 
diagonal. This will significantly reduce the search time 
for co-present vehicle data and the required memory for 
preprocessing tasks. 

 

 
         Figure 3 Un-clustered adjacency matrix 
 

 
                       Figure 4 Clustered adjacency matrix 
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The DBN topology is not guaranteed to be optimal and 
relies on the experts’ subjective judgement. In this case, 
the variables were chosen with two main objectives in 
mind: 

1) Having the least pre-processing requirements. 
2) Being the most convenient to measure from the 

environment in a real driving scenario. 
After the spectral clustering, the following 

variables were extracted from the dataset by fusing the 
position, speed, and lane data with the roundabout 
layout. The variables, their states, and their layout can be 
found under Table 1. 

 
Table 1 DBN topology, and variables states 

# Variable Name Variable States 

1 Lane {1,2} 

2 Start Position {E,N,W,S} 

3 Entered RA1 {True,False} 

4 Lane in RA {1,2} 

5 Destination {E,N,W,S} 

6 Inside RA {True,False} 

7 Stop to Enter {True,False} 

8 Lane Prime2 {1,2} 

9 AccFlag3 {Negative, non-Negative} 

10 AccFlag Prime {Negative, non-Negative} 

 

 
3. 3. CVPM Implementation and DBN Interfacing 

This study experiments with a variety of CVPMs to 
find the best one for this application. The most common 
sequence predictors used in this art are the vanilla RNN, 
GRUs and LSTMs, therefore those are the methods of 
choice for this study. The input and output for the three 
different implementations are the same and consist of a 

                                                 
1 RA stands for “Roundabout” 
2 “Prime” refers to the variable in the next time-slice 

12-second velocity history, complemented by the DBN 
stream. The DBN stream consists of the likelihood of one 
setting for binary variables, and the mean and the 
likelihood of the setting with maximum likelihood for 
non-binary variables. In this specific application, due to 
low number of DBN nodes, it was possible to feed all the 
variables into the CVPM to complement the velocity 
history. To keep it fair between the three methods, the 
number of layers and nodes were kept consistent 
throughout the trials, as well as training properties. One 
thing to keep in mind, however, is that in the case of 
complementary inputs, the DBN stream in this case, the 
closer the sequence predictor structure to a perceptron, 
the smoother the output and the higher the accuracy. 
This is validated by the results illustrated in the 
following figures. Also, to keep the results fair, Kalman 
smoothing was not implemented in these results, 
however, Kalman filter has shown to improve the 
prediction results in [14]. 

Stacked plot with the RNN, GRU and the LSTM results 
of heavy traffic are generated and illustrated in Figure 5, 
with errors in 

. For having been trained with the same training 
parameters, LSTM with the highest number of trainable 
parameters yields the lowest accuracy epoch-for-epoch, 
which is consistent with what was expected. A better 
meter for scalability of these approaches can be the 
number of iterations per second. RNN was trained at 2.5 
iterations per second, whereas GRU’s training was at 
0.54 iterations per second and LSTM’s at 0.52 iterations 
per second. To put these figures into perspective, 
considering RNN as the baseline, the GRU performs 
357.5% worse, while LSTM yields 380%. As a result, RNN 
is the most efficient CVPM of the bunch.  

A look at results regardless, shows a very tight 
competition between the GRU’s and RNN’s accuracy for 
the large transient near the end where the vehicle is 
jetting out of the simulation environment having left the 
roundabout. However, the edge RNN has over the other 
strategies shows in prediction of the smaller movements 
in between the long periods of stop. As these are results 
of heavy traffic during the simulation (notice the large 
periods of stop from the beginning until second 800), 
these small movements are all that is available to make 
predictions on, and their small value should not 
undermine their importance. 

3 Acceleration Flag 
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Figure 5 Stacked plot for heavy traffic results 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

         Figure 6 Stacked error plots for heavy traffic 

Prediction results for a lighter traffic scenario is 
illustrated in Figure 7. The time this vehicle spent 
traversing the same length is one third of the trip in the 
heavy traffic scenario. As a result, the long stop periods 
are absent in these trips. Resultantly, the prediction 
strategy needs to be able to predict micromovements 
throughout the trip as opposed to long stops and short 
bursts of speed transients. The results here show a less 
promising performance from GRU and confirm the 
superiority of the RNN. Another noteworthy takeaway 
from examining these results is the fact that despite the 
fundamental differences between the behavior the 
motion compared to the heavy traffic results (short 
bursts vs consistent micromovements) the changes are 
reflected in the predictions which can be attributed to 
the DBN stream.  

The DBN stream Can also be a loose explanation 
for why the RNN produces more accurate results than its 
competition. While the observed velocity history is fed as 
a data sequence into the CVPM, the DBN stream is held 
constant which is a counter to ideal working conditions 
of the modified RNN variants, however, vanilla RNN is 
insensitive to these circumstances. This however cannot 
be held as a fault of the approach as the solutions and 
workarounds would only overcomplicate the strategy, 

 

Figure 7 Stacked plot for light traffic results 
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Sacrifice performance, and achieve little accuracy 
improvements. To have discussed the accuracy figures 
quantitatively, the error bounds for normal driving 
scenario for the RNN are [-0.71,0.94], [-0.97,1.47], [-
1.46,2.75], and [-2.11,4.10], and in the case of heavy 
traffic driving are also measured at [-0.75,1.23], [-
1.58,2.25], [-4.62,4.63], and [-6.64,6.74] m/s for 1, 2, 5, 
and 10 second predictions respectively. One notable 
item in these results is that low speed predictions are a 
lot more accurate than the final high-speed transients as 
the vehicle is jetting off the simulation environment. 

Finally, the accuracy and validity of the results 
presented were measured by cross-correlations 
between actual data and the predicted speed profiles. 
These metrics for the RNN in the scenario presented in 
Figure 7 are shown in  

Table 2. As expected, the higher the prediction 
horizon, the lower the accuracy, but the results maintain 
a correlation greater than 0.895 and an RMSE less than 
0.036. 

 
Table 2 Accuracy metrics for RNN results of light traffic 

Prediction horizon Correlation RMSE 
1 second 0.97641 0.029334 
2 seconds 0.97792 0.028453 
5 seconds 0.97661 0.029249 
10 seconds 0.96462 0.035995 

 
4. Conclusion 

This study proposes a versatile, real-time 
implementable traffic participants behaviour predictor 
and situational awareness strategy for roundabout 
driving. The results of this study can be integrated with 
model predictive controllers similar to the ones in [4] 
and [3] to improve performance and achieve autonomy 
in specific driving scenarios where expert data is 
available, and the general layout of the environment is 
known. Although there is no guarantee that the expert-
yielded topology for the DBN is the optimal one, the one 
proposed in this specific use-case proved to be accurate 
and produced valid results for different scenarios, 
however, to achieve a well-rounded package that can 
produce accurate predictions for any roundabout, two 
aspects need to be improved. The hypothetical 
situational awareness package needs to be trained with 
data considering all infrastructure layouts, and needs to 
be able to identify the situation before generating the 
table of variables and their states, similar to the one in 
Table 1. However, that would be an extension of this very 
method and the principles remain the same. 
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