
Avestia Publishing

Journal of Machine Intelligence and Data Science (JMIDS)

Volume 2 Year 2021

ISSN: 2564-3282
DOI: 10.11159/jmids.2021.001

Date Received: 2020-08-24

Date Accepted: 2020-11-19

Date Published: 2021-02-26

1

A Hands-on Project for Teaching Semantic Web
Technologies in an Undergraduate AI Course

Neli P. Zlatareva
Central Connecticut State University

Department of Computer Science
1615 Stanley Street, New Britain, CT 06050, USA

zlatareva@ccsu.edu

Abstract - The latest advances in Semantic Web technologies
suggest an accelerating emergence of new exciting Artificial
Intelligence applications that are expected to dramatically
extend and improve current web services. Yet, these new
technologies are outside the scope of undergraduate computer
science curriculum. This paper presents our experience with
introducing a hands-on project intended to teach Linked Data
and Semantic Web as part of an undergraduate Artificial
Intelligence course. The project is intended to achieve the
following: 1.) Demonstrate the evolution of Knowledge
Engineering into Ontological Engineering; 2.) Introduce
students to Semantic Web technologies and tools such as
ontology editor Protégé, Web Ontology Language (OWL),
Semantic Web Rule Language (SWRL), and query language
SPARQL; 3.) Extend the topic on reasoning into Description
Logics and demonstrate the advantages of their inferencing
capabilities; 4.) Use OWL and SWRL to compare descriptive and
rule-based reasoning frameworks and show how their
integration can improve the efficiency and the semantic
adequacy of applications; 5.) Illustrate the Linked Data
principles in a practical setting. Limited assessment of the
pedagogical value of this project based on student learning
outcomes suggests that it enhances students’ understanding of
the core AI topics, boosts their engagement and interest in the
course, but more importantly introduces them to the newest
advances in web application development.

Keywords: Computer Science Education, Artificial

Intelligence, Ontological Engineering, Description

Logics, Semantic Web.

© Copyright 2021 Authors - This is an Open Access article
published under the Creative Commons Attribution
License terms (http://creativecommons.org/licenses/by/3.0).
Unrestricted use, distribution, and reproduction in any medium
are permitted, provided the original work is properly cited.

1. Introduction
Semantic Web (SW) is envisioned to extend and

dramatically improve current web services by providing
a universal language for information exchange allowing
data to be shared and reused by applications. Since Tim
Berners-Lee coined the term in late 1990s, the
enthusiasm for implementing his vision has grown
exponentially, and nowadays the theory and practice of
the Semantic Web is mature enough to make a difference
in how to utilize the enormous amount of information
available on the web. Yet, these new technologies are
outside the mainstream of undergraduate CS curriculum.
The hands-on project presented in this paper aims to
introduce students to the Semantic Web and Linked Data
technologies in practical terms and at the same time
extend their understanding of knowledge engineering to
include ontological modelling and semantic mark-up.

The SW project has the following learning
objectives:

LO1: Demonstrate the evolution of Knowledge
Engineering into Ontological Engineering.

LO2: Introduce students to SW technologies and
tools such as ontology editor Protégé, Web Ontology
Language (OWL), Semantic Web Rule Language (SWRL),
and query language SPARQL.

LO3: Extend the topic on reasoning into
Description Logics (DLs) and demonstrate the
advantages of their representation and inferencing
capabilities.

LO4: Use OWL and SWRL to compare descriptive
and rule-based reasoning and show how their
integration helps improve semantic adequacy of
applications.

2

LO5: Illustrate the Linked Data principles in a
practical setting by utilizing Apache Jena API to build a
prototype SW application.

We briefly elaborate on these objectives next.
Knowledge engineering is a core topic in any

undergraduate AI course, which introduces students to
the application site of AI. Although the field has evolved
considerably over the years and now offers well-
established methodologies for building Knowledge-
Based Systems (KBSs) [1], it does not fully demonstrate
the underlying principles of any engineering discipline,
namely knowledge sharing and reuse, as it is a common
practice to build knowledge bases from scratch. These
typically reflect the view of a domain expert or a group
of experts without imposing any restrictions on the
vocabulary used to represent domain knowledge. KBSs
are built as stand-alone problem solvers intended to
provide the best advice according to that view, which
might not be a consensus view on that domain.
Ontological engineering, on the other hand, emphasizes
the consensus knowledge of the community which is
expressed by precisely defined terms and thus, as
advocated in [2], is seen a successor of knowledge
engineering.

Ontological engineering as a field has a long
history dating back to early 1980s. It was inspired by
Newell’s AAAI presidential address [3], where he
advocated that it is not sufficient to describe knowledge
at the “symbol level” (the physical-symbol system
hypothesis formulated by Newell and Simon [4] is still the
underlying principle of modern AI), but at a more
abstract “knowledge level” to emphasize generic
definitions and reusable reasoning patterns. This
resulted in a paradigm shift from “production rules”
technology to “knowledge modelling” which led to the
realization that “…we can build sharable knowledge
bases for wider usability than that of a conventional
knowledge base” [2]. Semantic Web is the perfect
domain to demonstrate the critical role of ontological
engineering in ensuring semantic interoperability
between applications utilizing such sharable knowledge
bases, or ontologies.

The term ontology has its roots in philosophy, but
in the context of knowledge representation it is “… an
explicit, formal specification of a shared
conceptualization” [5]. That is, the ontology defines
fundamental concepts in the domain of interest, as well
as their properties and relations, and explicates the
agreed upon domain assumptions allowing for a unique
interpretation of that domain by any agent, human or

machine. Building an ontology is similar to building a
data model in a relational database application with one
fundamental difference, namely, ontologies implicitly
define formal rules of inference thus allowing new
information to be derived about objects and their
relations. Languages for building ontologies, therefore,
must have a well-defined formal semantics to ensure
that such inferences are sound. A lot of research was
devoted to developing ontology languages for the
Semantic Web [6]. Currently, the Web Ontology
Language (OWL) is the official recommendation of Web
Ontology Working Group of W3C [7]. Building ontologies
directly in OWL, however, is an extremely difficult task,
which is why a number of tools were developed to
facilitate this process. Protégé [8, 9] is the most widely
used open source ontology editor, because of the variety
of features offered including DLs reasoners. Two of the
reasoners, Pellet [10] and HermiT 1.4 [11], support
SWRL allowing for easy comparison of descriptive and
rule-based reasoning within the same framework.

DLs are not typically covered in an undergraduate
AI course but they are becoming increasingly important
with the widespread need for open access digital
libraries of various information resources and databases
residing on the Linked Open Data Cloud [12]. These are
decidable fragments of first-order logic intended to
achieve favorable trade-offs between expressivity and
scalability. Introducing DLs allows us to stress the
importance of reasoning that is both decidable and
expressive. It also brings the discussion on semantic
networks and frame-based representations, which are
the origins of DLs, to a more practical level and illustrates
how these alternative knowledge representation
languages were extended and linked together. Because
DLs is a family of logics which defer by their expressivity
depending on the constructors employed to build
complex descriptions, we choose to cover the simplest
logic, Attributive Language with Complement (ALC), in
detail and introduce the more expressive constructors
available in OWL and Protégé, respectively, and
corresponding to the SROIQ(D) logic as we progress
throughout the Semantic Web project. SROIQ(D),
although very expressive, is NP-hard, and if fully utilized
is extremely slow even for a small-scale application like
ours. We show that combining SROIQ(D) reasoning with
SWRL rules can improve run-time efficiency and avoid
some of the pitfalls of DLs reasoning caused by the Open
World Assumption (OWA). We demonstrate the
limitations of rule-based reasoning due to the Closed
World Assumption (CWA), and show that combining

3

SWRL rules and DLs allow us to improve semantic
adequacy of the obtained results.

Finally, we demonstrate how all these
technologies are utilized to build artificial intelligence
applications for the Semantic Web. As long as we have
the data in a serializable RDF format (a huge number of
such datasets is currently available on the Linked Open
Data Cloud, https://www.lod-cloud.net/), we can use
tools such as Apache Jena to set-up an application in a
fast and convenient way. Brief introduction to Jena API
and query language SPARQL is intended to demonstrate
the development of such applications by using a
simplified version of the ontology presented in this
paper.

The rest of the paper is structured as follows.
Section 2 discusses the motivation and formal
preliminaries of the project. In Section 3, we present the
lesson plan, activities and assignments intended to
evaluate student progress towards project learning
objectives. Section 4 introduces the SW project in some
detail with a reference to the web site where the actual
code can be found. We conclude with some assessment
results and reflect on some challenges that we plan to
address in future course offerings.

2. Motivation and Formal Preliminaries
The main goal of the Semantic Web project is to

illustrate the evolving understanding of AI from a stand-
alone problem solver to a network of intelligent agents
working in cooperation and serving as equal partners to
humans in a variety of applications built on the top of the
Semantic Web. The best example of this transition is the
Linked Open Data Cloud, which can be viewed as a huge
library of compatible datasets that SW applications can
easily access, interpret and integrate utilizing a common
reasoning framework based on DLs. As part of the
project, we introduce students to the underlying
representation, Resource Description Framework (RDF),
its derivatives (RDFS and OWL) and serializations, and
discuss how it changes established knowledge
engineering practices.

Assuming that students are already familiar with
the foundations of knowledge representation and
reasoning, introducing them to OWL and DLs as the
latest advances in the field should not be a challenge. In
fact, an ontology is a formal representation of a semantic
network defined as a set of triples <Subject, Predicate,
Object>, where , ⊑, and  are special predicates for
describing membership, subsumption, and equivalence
relations, respectively.

In DLs context, a KBS is a triple <TBox, ABox, RBox>,
where:

 The TBox defines the agreed upon domain
terminology expressed as a hierarchy of
classes (concepts) and formally described by
subsumption and equivalence relationships
between classes, C ⊑ D and C  D, respectively.
The latest version of OWL implemented in
Protégé, OWL 2, also includes disjunction
constructor, a special class expression Self:
S.Self, and allows for qualified number
restrictions n S.C and n S.C to express
statements such as “a family with at least/at
most 3 children”.

 The ABox contains facts about the domain
expressed as class membership of domain
entities/individuals (a  C, or equivalent C(a)),
property relations between domain entities
(<a, R, b>, or equivalent R(a, b)), and equality
relations between individuals (a = b, or
sameAs(a, b)).

 The RBox defines complex properties such as
inverse properties, symmetry, reflexivity,
irreflexively and disjunctiveness of properties,
as well as combination of properties (property
chains), R1  R2 ⊑ S, allowing statements such
as “my father’s brother is my uncle”.

Choosing an appropriate domain for the project
was a major challenge since it was supposed to be
accessible to students, inference rich and easy to
navigate and evaluate inference results. Our initial
choice was the “university domain” [13], but it did not
offer a broad variety of inference patters although it
allowed for experimentation with a number of reusable
inference tasks such as web search, data integration and
personalized recommendation. Other domains
considered were “home design”, “car buying”, “choosing
a movie”, and a few more (some of these were explored
by students as independent research projects). These
domains made great Semantic Web applications but did
not serve well as inference test beds for the project. We
finally decided on the most “trivial” choice – the “family”
domain, because it is inference rich, can be easily
described in both procedural and declarative terms thus
allowing us to illustrate advantages and disadvantages of
both frameworks and show how their integration
ensures better semantic adequacy. Another advantage is

about:blank

4

that students are already familiar with this domain as it
is used in our textbook [14] to illustrate FOL.

3. Lesson Plan, Activities, and Assignments

The Semantic Web project is designed as a final
four-weeks module of our undergraduate AI course.
Students are expected to have already acquired
knowledge on various knowledge representation
frameworks (Propositional Logic, First-order Logic,
Default Logic, Semantic Networks) and have practiced
associated reasoning techniques.

The four-weeks lesson plan, activities and
assignments helping assess student progress towards
achieving project learning objectives is as follows:

Week 1:
 Introduction to the Semantic Web and Protégé.

After a brief 40-minutes lecture outlining the
limitations of current web technologies and
traditional knowledge engineering, students
are assigned several motivational on-line
presentations about the SW [15, 16, 17, 18],
and a tutorial on Protégé [8] for independent
work. Students are asked to write a brief essay
on SW and ontological engineering to assess
their progress towards LOs 1 and 2. The
remaining half of the lecture introduces the
tableaux algorithm for PL to allow for easier
transition to DLs. We found that students
quickly grasp this new reasoning technique
after being previously introduced to Wang’s
algorithm [19].

 Second lecture is devoted to DLs. We cover ALC
syntax, model-theoretic semantics and
modified tableaux algorithm for ALC in detail.
An assignment on the latter (proofs) is given as
an assessment instrument towards LO 3 and
also to ensure that students are prepared to
tackle more advanced DLs implemented in
different versions of OWL.

Week 2:
 First lecture tackles the foundations of the SW:

RDF and its serializations, RDFS and its
axiomatic and Direct Inference System
semantics. These are graph-based data models
which makes it easy for students to connect
them to semantic networks. However, it is
important to emphasize the major difference
between RDF/RDFS and semantic networks,
namely the lack of well-defined semantics for
the latter.

 In the second lecture, we expand on ALC to
introduce more DLs constructors in
transitioning to OWL which latest version,
OWL 2, is based on SROIQ(D) logic. As we
discuss different versions of OWL 2, we stress
on the need for a reasonable balance between
expressivity of the language and efficiency of
its inference procedure. Students can assess
this balance in practical terms (experimenting
with different types of inference tasks) as they
work through the hands-on project as
described in the next section.

Week 3:
 Students are expected to have completed the

introductory Protégé tutorial and be ready to
begin hands-on practice with the Semantic
Web project. First lecture introduces project
objectives and the “family” ontology (see next
section for details). Based on this example
domain and student essays, we further
advance the discussion on similarities and
differences between knowledge engineering
and ontological engineering. Students are
asked to expand the initial domain (the A-box)
with a new “related” family to familiarize
themselves with the ontology and use Protégé
reasoners HermiT and Pellet to validate the
extended ontology and compare inference and
performance results. They are expected to
report these results on the project discussion
board explaining noticed semantic
discrepancies. They also should notice that
HermiT run-time performance is better even
on a small application like ours (due to a more
efficient version of the tableaux algorithm that
it employs, called hypertableau, but we were
not able to go into details and interested
students were referred to [11]). Students
should also catch some unintuitive inferences
due to the underlying assumptions, Open
World Assumption (OWA) employed by
underlying DL and Closed World Assumption
(CWA) which is behind SWRL.

 Second lecture is split between a discussion
about CWA and OWA explaining unintuitive
inference results reported by the students, and
introduction of the Semantic Web Rule
Language (SWRL) supported by both Pellet
and HermiT. SWRL rules are Horn clauses
applied in forward chaining manner and thus

5

easily comprehensible by students. In Protégé,
students can experiment with both procedural
and declarative reasoning on the same
ontology. For that, students are given multiple
queries phrased in English (see next section)
which they must translate to OWL and run in
DL Query tab in Protégé. To see the difference
between the two reasoning frameworks,
students are also asked to substitute some of
the SWRL rules with property chains (i.e.
expand the R-box of the ontology), and finally
to use the Drools rule engine (embedded in
Protégé) to convert SWRL rules and all
relevant OWL knowledge into OWL2 RL (the
rule version of OWL2) which should result in a
considerably faster run time on the same
queries. This assignment aims to assess
student progress towards LOs 2, 3 and 4.

Week 4.
 First lecture reviews the results of student

experiments with an emphasis on semantic
limitations of both descriptive and procedural
frameworks. We discuss how to manage the
consequences of OWA in the T-box to improve
the adequacy of OWL reasoning and why CWA
is instrumental in achieving computational
efficiency in rule-based reasoning (SWRL is
strictly monotonic) at the expense of some
semantic inadequacy. Interestingly, some non-
monotonicity can be “simulated” by utilizing
OWL negation constructor in more advanced
DL queries. Students are asked to experiment
with different versions of such queries to
ensure that only valid results are returned and
explain run-time differences due to property
restrictions involved. This assignment aims to
assess LO 4.

 Final lecture summarizes the results of the
project and discusses how family ontology can
become part of the Linked Open Data Cloud.
For that, we have created a small application
using Apache Jena (http://jena.apache.org)
which provides extensive Java libraries for
processing RDF files, as well as allows for
SPARQL queries to be integrated into the
application code. It should be noted that the
original family ontology developed in Protégé
and processed using DLs reasoners cannot be
efficiently handled by Jena reasoners including
Jena OWL reasoner. The letter uses rules to

reason about instances while reasoning about
classes is performed by utilizing prototype
instances of classes. For example, if a
prototype instance of class A is proved to be a
member of class B then it is concluded that A is
a subClassOf B. This type of reasoning cannot
handle expressive ontologies such as our
family ontology which was intended to
illustrate the richness of descriptive
representations. On the other hand, Jena API
allows for rapid application development and
easy deployment on the SW. To introduce
students to Jena software, we have created a
smaller less expressive version of the family
ontology which can be efficiently processed by
Jena reasoners. Various types of SPARQL
queries were demonstrated and students were
encouraged to use this prototype framework
to create their own applications utilizing RDF
files on Linked Open Data Cloud.

4. Project Description
As stated above, the project is about building an

open, distributed “family” library, where people can
input information about their families to discover
various inter-family and cross-family relations between
individuals. The ultimate goal is to deploy this library on
the Linked Open Data Claud by configuring a W3C-
standard SPARQL endpoint using Apache Jena Fuseki.
Unfortunately, limited time for the project does not allow
us to discuss this important practical matter. At this
point, development activities as well as ontology
processing are performed in Protégé, and a small Java
application created with the help of Jena API is used to
exercise a variety of query patterns.

Students begin their work on this project with a
fully functional ontology and their first assignment is to
study and expand it as suggested in section 4.1. Next step
is to experiment with a reasoner to study various
SROIQ(D) constructors (section 4.2.) followed by a more
detailed assessment of OWL 2 property chains and
comparing them to SWRL rules built into the original
ontology (section 4.3.). The final part of the project
illustrates how Jena API (http://jena.apache.org) can be
used to build and query Semantic Web applications
(section 4.4.).

4.1. Exploring and extending family ontology
 The objective of this project module is to
demonstrate the ontology development process.

about:blank

6

Once the domain and the intended purpose of the
ontology are defined, the next step in the development
process is to decide on the common terminology
describing domain knowledge. In our case, these are the
terms and relations referring to the entities in the family
domain. We have chosen the classification given at
freepages.rootweb.com as a starting point for building
our family ontology, which was subsequently modified
to better fit the needs of the project. It suggests a very
limited number of classes describing people and their
sex, Person and Sex, with subclasses Parent, Male and
Female. In addition, we want to have a class, Family, to
represent a group of individuals that belong to the same
family, and Man/Woman as defined classes for more
convenient specification of individuals. Such “shortcuts”
are common in knowledge engineering for improving
efficiency. Currently, we have four defined Family
subclasses, BennettFamily, BrownFamily, RichardsFamily
and SmithFamily (see
http://www.cs.ccsu.edu/~neli/FamilyProject.owl).

Deciding on basic properties is the next step. In
OWL (and Protégé, respectively) properties are divided
into object properties and data properties. The former
describe relations between domain entities, while the
later define object attributes.

We have chosen the following set of basic
properties: hasLastName, hasFirstName, hasBirthday
(data properties describing individuals), hasMother,
hasFather, hasSpouse, hasFormerSpouse (object
properties describing relations between individuals)
and hasSex (also an object property associating
individuals with Female/Male objects). Other properties
depicted at freepages.rootweb.com and some additional
ones are shown on Figure 1.

Figure1. Property hierarchy in family ontology.

After familiarizing themselves with the basic
ontology design, students are asked to expand the
ontology with a new “related” family to be used in
subsequent processing.

4.2. Utilizing reasoners
 This part of the project is intended to familiarize
students with DL reasoners such as Pellet and later
compare them to the rule-based reasoners such as
Drools. To illustrate some of Pellet features, consider
individual BR1972 initially defined as:
FamilyProject:BR1972 rdf:type
owl:NamedIndividual ,
FamilyProject:Man;
FamilyProject:hasFather FamilyProject:IR1940 ;
FamilyProject:hasMother FamilyProject:IG1945 ;
FamilyProject:hasBirthYear 1972 ;
FamilyProject:hasFirstName "Boris" ;
FamilyProject:hasLastName "Richards" .

After running a reasoner (see Figure 2), some of
the facts derived about BR1972 are counter-intuitive
(BR1972 is his own sibling, halfsibling, brother) and
students are asked to explain why, and how this can be
revised (at this point, students are working with the
original ontology which combines knowledge in OWL
and SWRL). They are expected to notice that the problem
cannot be resolved by making hasSibling property
reflexive (which causes logical inconsistency), nor the
corresponding SWRL rule can be modified due to the
monotonic nature of the rule-based formalism. Students
are also asked to create DL queries to extract specific

about:blank

7

subsets of derived results. For example, hasSibling value
BR1972 returns BR1972 (counter-intuitive), SR1970,
and VR1965. If asked hasSibling min 3, BR1972 is one of
the instances returned. But if asked hasSibling max 3, no
result is returned. Students are asked to explain this and
similar results, obviously caused by the OWA under
which DLs operate.

Classification is a major task of a DL reasoner. In
our ontology, if we want to find all members of a given
family, we must appropriately define the class. The
description of BennettFamily as well as the derived
instances of the class are shown on Figure 3.

Students are asked to modify Family subclasses’
definitions to include only immediate family members or
only in-laws, and create new classes including members
of more than one family (for example class
BrownSmithFamilies to include members of both
families).

Figure 2. Derived facts about BR1972.

4.3. SWRL rules versus OWL property chains
 One of the main emphases of this project is to

demonstrate the difference between descriptive and
procedural knowledge representations. The original
ontology utilizes SWRL rules to express the procedural
component of the domain knowledge. Students are asked
to substitute rules 1 through 7
(http://www.cs.ccsu.edu/~neli/FamilyProject.owl)
with property chains to compare the expressiveness of
the two formalisms. Some rules can be easily converted
into property chains, such as hasParent(?x, ?y) ^
hasParent(?y, ?z) -> hasGrandParent(?x, ?z).

Other rules, however, are impossible to convert
within the selected representation framework. For
example, consider the rule deriving hasUncle (isUncleOf
is declared as its inverse):
hasParent(?x, ?y) ^ hasBrother(?y, ?z) -> hasUncle(?x, ?z)
It seems natural to express hasBrother(?y, ?z) as
hasSibling o (hasSex value Man). However, hasSex value
Man is not expressible in OWL and the only way to
resolve this problem is to extend the A-box by declaring
sisterhood/brotherhood relations explicitly.

Figure 3. BennettFamily class description and its instances.

After “hard-wiring” sisterhood/brotherhood

relations in the A-box, students will encounter the same
problem each time hasSex property is involved and
applying the same solution would result in an
unreasonable extension of the A-box.

A different problem is illustrated by the rule

8

hasStepMother(?x, ?m) ^ isMotherOf(?m, ?c) ^
hasStepFather(?c, ?y) ^ hasFather(?x, ?y) ->
 hasStepSibling(?x, ?c).
Note that hasFather(?x, ?y) is not part of the property
chain hasStepMother o isMotherOf o hasStepFather and
thus hasStepSibling cannot be defined by a property
chain. Similarly, if hasParent(?x, ?p) ^ hasSpouse(?p, ?s) ^
hasFormerSpouse(?p, ?f) ^ isParentOf(?f, ?x) ->
hasStepParent(?x, ?s) is “converted” to hasParent o
hasSpouse o hasFormerSpouse o isParentOf, it would
result in deriving the triple DB1965 hasStepParent
SR1970 which is incorrect.

These experiments demonstrate differences in
rules’ and DL statements’ expressivity. Clearly, OWL
property chains are limited in the type of causal
relationships they can express to what is referred in [20]
as “limited transitivity”. At the same time, rules alone
also produce semantically incorrect results due to their
monotonicity. For example, BR1972 is derived to be his
own brother, sibling, half sibling, and nephew. However,
we can create a DL query that takes the result returned
by the rule hasMother(?x, ?m) ^ hasFather(?x, ?f) ^
hasMother(?y, ?m) ^ hasFather(?y, ?f) -> hasSibling(?x, ?y)
and filters incorrect instances by using the DLs negation
constructor, i.e. hasSibling value BR1972 and not
(hasFirstName value “Boris”). Notice that this is very
different from the “negation as failure” rule in non-
monotonic reasoning.

Asking for JS1959 cousins can be done by means of
the following queries:
hasCousin value JS1959 and not (hasParent some

 (isParentOf value JS1959))
or

hasCousin some (JS1959) and not (hasParent some
 (isParentOf value JS1959))

It is interesting to notice the difference in
execution times of these semantically equivalent queries.
The former takes 67.372 seconds, while the latter takes
89.556 seconds (with Pellet). Clearly, using nominals (i.e.
searching in a class versus referring to a particular
individual) is computationally less efficient. Yet another
version of the same query, hasCousin some
(hasFirstName value "Jacob") and not (hasParent some
(isParentOf value JS1959)), takes more than 7 minutes to
return the result (times vary depending on computer
speed, but their correlation stays the same). As part of
their last assignment, students are asked to create
similar equivalent queries and explain their vastly
different execution times. Obviously, constructors used
in each class expression define OWL profile supporting

query execution and OWL profiles are based of different
DLs which belong to different complexity classes.

Finally, as part of this module, students are
assigned to study and experiment with Drools, a rule-
based inference engine embedded in Protégé. It is
interesting to note that Drools and Pellet process rules
differently. Students will notice that conclusions derived
by SWRL rules using Pellet are highlighted in yellow (see
Figures 2 and 3) and treated as any other conclusion by
the reasoner. This is because for Pellet, SWRL rules are
an “extension” of OWL representation. Drools, on the
other hand, implements OWL 2 RL (the rule version of
OWL 2) and works as a traditional rule-based engine.
Once a conclusion is derived, it is treated as an axiom and
thus prevents Protégé explanation capability to be
initiated for that conclusion. This, however, is not a bad
thing, because if properly used it may improve the
computational efficiency. When Drools is called, all OWL
axioms and SWRL rules are transferred to the rule
engine for processing and all inferred axioms are
transferred back to OWL. The resulting ontology is now
permanently extended, and all subsequent DL queries
are executed much faster. For example, the last version
of the query about JS1959 cousins takes 3.771 seconds
compared to more than 7 minutes previously.

We have seen so far that neither OWL nor SWRL
allow for building semantically correct extensions of the
underlying dataset. In both frameworks, semantic
inadequacies result from overgeneralization errors. If
we can envelop those extensions in a rule-based
application intended to identify and process such
overgeneralization errors, then we can provide the user
with semantically adequate results. The last module of
the project describes a small application built with the
help of Jena API (http://jena.apache.org). It also
introduces students to SPARQL, the query language for
the Semantic Web.

4.4. Building applications for the Semantic Web

It should be noted that our original ontology was
intended to demonstrate the richness of descriptive
representations, but such ontologies cannot be
efficiently handled by Jena reasoners. This is why we
created a smaller, simplified version of our ontology (see
http://www.cs.ccsu.edu/~neli/FamilyProjectTiny.owl)
to allow students to experiment with different Jena
reasoners (RDFS-based, OWL-based, transitive). It
should be noted that Pellet can be easily integrated with
Jena which allows for efficient processing of the original
ontology, but for the purposes of this project we feel it is

about:blank
about:blank

9

more beneficial for the students to experiment with
conventional built-in Jena reasoners.

The following snippet of Java code creates and
loads the ontology model, and instantiates and runs Jena
OWL reasoner (see [21] for more on Jena API):
Model schema =
ModelFactory.createOntologyModel();
schema.read("https://cs.ccsu.edu/~neli/FamilyPr
ojectTiny.owl", null, "RDF/XML");
Reasoner reasoner =
 ReasonerRegistry.getOWLReasoner();
reasoner = reasoner.bindSchema(schema);
InfModel owlSchema =
ModelFactory.createInfModel(reasoner, schema);

The extended dataset, owlSchema, is now ready

| member |
============
| "Tony" |
| "Mark" |
| "Marie" |
| "Leo" |
| "John" |
| "Joyce" |
"Archie"

A custom implementation of the
ResultSetFormatter method allows the result to be
returned in a desired format rather than in a standard
table form and can be further processed by the
application as appropriate.

The CONSTRUCT query allows the application to
extract triples directly from the dataset or build new
triples out of existing ones. Consider the following
CONSTRUCT query intended to create sibling relations
between children of AB1875 (same prefixes as above
marked here as …):
String queryQuestion = new String ("Retrive the
children of :AB1875 and establish sibling
relation between them");
String queryString = … +
"CONSTRUCT {?name1 :hasSibling ?name2} " +
"WHERE {?child1 :hasFather :AB1875 . " +
 "?child2 :hasFather :AB1875 . " +

 "?child1 :hasFirstName ?name1 . " +
 "?child2 :hasFirstName ?name2 . }";

The query is instantiated the same way as shown
above. Here is the snippet for executing the query:
System.out.println(queryQuestion);
try {Iterator<Quad> triples =
qexec.execConstructQuads();
while (triples.hasNext()) {

 Quad quad = triples.next();
 System.out.println(quad.getSubject() + " " +
 quad.getPredicate() + " " +
 quad.getObject()); }
} finally {qexec.close();}

The result with abbreviated links to resource
hasSibling is shown next:

"Leo" http://...#hasSibling "Joyce"
"John" http://...#hasSibling "Mark"
"John" http://...#hasSibling "Leo"
"John" http://...#hasSibling "John"
"John" http://...#hasSibling "Joyce"
"Joyce" http://...#hasSibling "Mark"
"Joyce" http://...#hasSibling "Leo"
"Joyce" http://...#hasSibling "John"

 "Joyce" http://...#hasSibling "Joyce"

These newly created triples can be added to
the dataset thus further extending the model. That is,
CONSTRUCT queries can act similarly to “if-then”
production rules.

The ASK query allows the application to ask if a
particular triple or a set of triples is present in the
dataset. Assume, we ask if Bennett family has a member
named Mark or Marie:
String queryQuestion = new String ("Is there a
Bennett with first name Mark or Marie?");
String queryString = … +
"ASK WHERE {{?m a :BennettFamily . " +
 "?m :hasFirstName 'Mark' .}" +
 "UNION {?m a :BennettFamily ." +

 "?m :hasFirstName 'Marie' .}}";

The output is “Yes”. It would be “No” if neither Mark,
nor Marie is a member of the family.

Here is the snippet executing the query:
System.out.println(message);
try {System.out.println(qexec.execAsk() ?
 "Yes" : "No"); }
finally {qexec.close();}

The DESCRIBE query returns an RDF file in a
TURTLE format containing all triples in the dataset
related to a particular resource. Here is the one about
Marie Bennett:
String queryQuestion = new String ("Tell me
everything you know about Marie Bennett.") ;
String queryString = … +
 "DESCRIBE ?member " +
 "WHERE {?member a :BennettFamily . " +
 "?member :hasFirstName 'Marie' . }";

The output for this query is very long but here is
the beginning of it:
Tell me everything you know about Marie
Bennett.

10

@prefix :
<http://www.cs.ccsu.edu/~neli/FamilyProjectTiny
.owl#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-
syntax-ns#> .
@prefix xml:
<http://www.w3.org/XML/1998/namespace> .
@prefix xsd:
<http://www.w3.org/2001/XMLSchema#> .
@prefix rdfs:<http://www.w3.org/2000/01/rdf-
schema#> .
_:b0 a rdfs:Resource , rdfs:Class , owl:Class ;
rdfs:subClassOf :Person , _:b1 , _:b0 ,
 owl:Thing , rdfs:Resource ;
 owl:equivalentClass _:b0 ;
owl:intersectionOf [a rdfs:Resource, rdf:List ;
 rdf:first :Person ;
 rdf:rest [a rdfs:Resource , rdf:List ;
 rdf:first _:b1 ;
 rdf:rest ()]] .

The returned RDF file can be used on its own and
queried if specific information about that resource is
sought. The snippet executing the query is the following:
System.out.println(message);
try { qexec.execDescribe().write(System.out,
"TTL");}
finally {qexec.close();}

Introducing students to Apache Jena and SPARQL
allows them to build their own SW applications utilizing
the enormous volume of datasets available on the Linked
Open Data Cloud.

5. Conclusion
In this paper, we presented a hands-on project

introducing students to Semantic Web technologies and
at the same time allowing us to expand and revisit some
of the core topics of an undergraduate AI curriculum. Our
experience so far suggests enhanced student
understanding of the course material, increased
engagement, and interest in the course. Overall, students
did well on project assignments, however some
weakness was noticed when asked to explain
experimental results. For example, not all students were
able to correctly explain why hasChild max 4 returns no
result, although OWA which causes the problem was
discussed in length.

It should be noted that the timeframe allocated for
this project did not allow for a thorough review of all
project components. Many advanced features of OWL
were only demonstrated on family ontology, and
complexity results of different DLs (OWL profiles) were

not discussed. Also, students were only briefly
introduced to Jena API and SPARQL by working mostly
with the provided code. In future course offerings, we
would like to include an independent project component
into the course to encourage students to build their own
application utilizing datasets from the Linked Open Data
Cloud.

Overall, we believe that this project is a valuable
component of our AI course and we plan to further fine-
tune it to maximize its pedagogical value.
Acknowledgement. This work was partially supported by the

School of Engineering, Science & Technology at CCSU.

References
[1] Schreiber G., Akkermans H., Anjewierden A., de

Hoog R., Shadbolt N., de Velde V., Wielinga B.

Knowledge Engineering and Management: The

CommonKADS Methodology. MA: MIT Press, 2000.

[2] Mizoguchi R. Tutorial on Ontological Engineering:

Part 1. New Generation Computing, vol. 21, no. 4, pp.

365-384, December 2003.

[3] Newell A. The Knowledge Level (presidential

address). AI Magazine, vol. 2, 1980.

[4] Newell A. and Simon H. Computer Science as

Empirical Inquiry: Symbols and Search.

Communications of the ACM, vol. 19, no. 3, 1976.

[5] Gruber, T. A Translation Approach to Portable

Ontology Specifications. Knowledge Acquisition, vol.

5, no. 2, pp. 199-220, 1993.

[6] Kalibatiene, D. & Vasilecas, O. Survey on

Ontology Languages. In Lecture Notes in Business

Information Processing 90, pp. 124-141, 2011.

[7] [Online] Available: https://www.w3.org/OWL/

[8] Horridge M. A Practical Guide to Building OWL

Ontologies Using Protégé 4 and CO-ODE Tools,n

[Online],Available:http://mowl- power.cs.man.ac.uk/

protegeowltutorial/resources/ProtegeOWLTutorialP4

_v1_3.pdf

[9] Musen, M. A., The Protégé project: A look back and

a look forward. AI Matters. ACM Special Interest

Group in Artificial Intelligence vol. 1, no. 4, June

2015.

[10] Sirin E., Parsia B., Cuenca Grau B., Kalyanpur A.,

Katz Y., Pellet: A Practical OWL-DL Reasoner,

[Online]. Available: http://www.cs.ox.ac.uk/people/

 bernardo.cuencagrau/publications/PelletDemo.pdf

[11] B. Motic, Shearer B., and Horrocks I., Hypertableau

Reasoning for Description Logics. Journal of

Artificial Intelligence Research, vol. 36, pp. 165 –

228, 2009.

about:blank
about:blank
about:blank
about:blank

11

[12] [Online] Available: https://lod-cloud.net/

[13] Zlatareva N., Swaim N., Fitzgerald M., Bagheri-

Marani, S., and J. Watkins, Building an Application

Agent for the Semantic Web. In Proceedings of 9th

International Multi-Conference on Complexity,

Informatics and Cybernetics (IMCIC’18), March,

Orlando, FL, 2018.

[14] Russell S. and P. Norvig, Artificial Intelligence. A

 Modern Approach, 3-rd edition, Prentice Hall, 2010.

[15] Berners-Lee T., Hendler J., Lassila O. The Semantic

Web. Scientific American, May 2001.

[16] Berners-Lee, T. The Next Web. TDC 2009 conference

 speech.[Online].Available:http://www.ted.com/talks/

tim_berners_lee_on_the_next_web

[17] Heath T., Linked Data? Web of Data? Semantic Web?

 WTF? [Online]. Available:

 http://tomheath.com/blog/2009/03/linked-data-web-

of-data-semantic-web-wtf/

[18] [Online].Available:

https://www.cambridgesemantics.https://www.cambr

idgesemantics.com/blog/semantic-university/intro-

semantic-web/

[19] Wang, H. “Towards mechanical mathematics”, IBM

 Journal of Research and Development, vol.4, 1960.

[20] Stevens R., Stevens M., Matenzoglu N., Jupp S.,

Manchester Family History Advanced OWL Tutorial,

2015,[Online].Available:http://owl.cs.manchester.ac.

uk/publications/talks-and-tutorials/fhkbtutorial/

[21] [Online] Available: http://jena.apache.org/tutorials/

[22] DuCharme, B. Learning SPARQL, O’Reilly Publ.,

2013.

about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank

