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Abstract - This paper presents a new Integral Second-Order 
Terminal Sliding Mode Control incorporating Time Delay 
Estimation applied to passive rehabilitation protocols of an 
exoskeleton robot with dynamics uncertainties and unknown 
bounded disturbances. The use of second-order sliding mode is 
due to its attractive characteristics of accuracy, attenuation of 
chattering and fast convergence. However, its problem is that 
the unknown dynamics of the exoskeleton robot and external 
disturbances caused by its different wearers can be amplified by 
the second derivative of the sliding surface, which leads to 
instability of the exoskeleton system. Using Time Delay 
Estimation will estimate the uncertain dynamics while 
overcoming the main limitation of second-order sliding mode. 
The stability analysis is formulated and proved based on 
Lyapunov function. Experimental results with a healthy subject 
confirm the effectiveness of the proposed control. 

Keywords: Rehabilitation robots, Second Order Sliding 
Mode; Time Delay Estimation, Passive assistive motion. 

NOMENCLATURE 

𝜃, 𝑧1 Joints position 

𝜃̇, 𝑧2 Joints velocity 

𝜃̈ Joints acceleration 
𝑀 Inertia matrix, 

𝐶 Coriolis and centrifugal matrix 
𝐺 Gravitational vector 

𝜏, 𝑈 Control input 
𝑓𝑑𝑖𝑠 External disturbances 
𝑀0 Known inertia matrix,  
𝐶0 Known Coriolis/centrifugal matrix 
𝐺0 Known gravity vector 
𝑓 Known dynamic model 
𝐻 Unknown dynamic model 
𝐻̂ Estimated of dynamic model 
𝛥𝐻 Time delay error 
𝑆 Sliding surface 
𝑒 Position error 
𝑉 Lyapunov function 

1. Introduction
Recently, the use of physiotherapy rehabilitation 

robots has shown great potential for improving the 
patient's disability and independence of function [1]. 
Control of these kind of robots presents additional 
complexity over the control of conventional robotic 
manipulators due to their complex mechanical structure 
designed for human use, the types of desired tasks, and 
the sensibility of the interaction with a large diversity of 
human wearers [1]. As a result, these conditions, make 
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the robot system vulnerable to dynamics uncertainties 
and external disturbances. 

Sliding mode control (SMC) is one of the most 
popular control strategies that is widely applied on 
robotics systems thanks to its attractive characteristics 
of robustness to the dynamics nonlinear-uncertainties 
and external disturbances [2]. However, conventional 
SMC suffers from two major shortcomings. The first one 
is that SMC ensures an asymptotic convergence to the 
equilibrium without finite-time convergence. Many 
control techniques have been developed to overcome 
this problem such terminal sliding mode control (TSMC) 
[3]. This later utilizes a nonlinear switching surface to 
guarantee the finite time convergence by including a 
fractional order, which allows to the states trajectories 
to converge to equilibrium faster. In literature, the 
accuracy performance of TSMC is improved by 
proposing a new approach for instance, fast TSMC [4] 
and non-singular TSMC [5]. A second major problem is 
that SMC is fundamentally based on a larger high-gain 
switching controller which pushes the system state to 
converge to the equilibrium. Nevertheless, the high-
activity switching gain causes an undesirable 
“chattering” dilemma which can damage the actuators of 
the robot system [6]. 

Recently, many conventional approaches were 
developed to avoid the undesirable chattering problem; 
e.g. by exchanging the discontinuous function by a 
continuous function (as a saturation function). Second 
Order Sliding Mode Controller (SOSMC) [7] is considered 
as one of the efficient approaches dedicated to eliminate 
chattering problem and provide a high performance’s 
precision. Additionally, various approaches have been 
developed to improve the performance of SOSMC such 
Twisting control and Super-Twisting control [8]. The 
main idea of SOSMC is to allow a sliding surface and its 
consecutive derivative to go to zero and to maintain the 
discontinuous control under an integral function, which 
can eliminate the undesirable chattering. Nevertheless, 
the second-time derivative of the sliding surface might 
produce instability of the system, a risk that the 
nonlinear uncertainties and external disturbances 
amplify. Recently, Second Order Terminal Sliding mode 
Control (SOTSMC) was introduced to provide a great 
control performance to deal with a chattering 
phenomenon and provide a finite time convergence [9, 
10]. So, to the best of our knowledge, no SOTSMC with 
integral action has been proposed before to solve the 
mentioned problems. 

Motivated to deal with the mentioned problem, 
and based on our previous work [11, 12], we proposed a 
new integral Second Order Terminal Sliding mode 
controller (ISOTSMC) combined with Time Delay 
Estimation (TDE) [12] to provide a good approximation 
of the uncertainties and the bounded external 
disturbances of an exoskeleton robot. TDE uses time-
delayed knowledge about the previous system state and 
its control input to provide an accurate estimation of 
unknown dynamics. The incorporation of integral 
control relies on its attractive characteristics, where it 
has delivered good performance with conventional SMC 
[13]. The control scheme aims to keep the high precision 
of the SOSMC, eliminate the chattering problem, and 
provide a finite-time convergence to equilibrium. 

The remainder of the paper is organized as follows. 
The dynamics of the robot is presented in the next 
section. The control scheme is described in section 3. 
Experimental results and some comparisons are given in 
section 4. Finally, the conclusion is presented in section 
5. 

 

2. Characterization of system rehabilitation 
2. 1. Exoskeleton Robot Development 

The developed exoskeleton robot ETS-MARSE (École 
de technologie supérieure - Motion Assistive Robotic-
exoskeleton for Superior Extremity) is a redundant robot 
consisted of 7-degrees of freedom (DOFs), as shown in 
Fig. 1. It was created to provide assistive physiotherapy 
motion to the injured upper limb. The idea of the 
designed exoskeleton is basically extracted from the 
anatomy of the upper limb of the human, to be 
ergonomic for their wearer along the physiotherapy 
session. The shoulder part consists of three joints, the 
elbow part comprises by one joint and the wrist part 
consists of three joints. Each part responsible for 
performing a variety of upper limb motions. All special 
characteristics of the ETS-MARSE, the modified Denavit-
Hartenberg (DH) parameters (Table 1), and comparison 
with similar existing exoskeleton robots are summarized 
in [14]. 
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Figure 1. Reference frames of ETS-MARSE. 

  
Table 1. Modified Denavit-Hartenberg Parameters 

Joint (i) αi-1 ai-1 di θi 

1 0 0 ds θ1 

2 -/2 0 0 θ2 

3 /2 0 de θ3 

4 -/2 0 0 θ4 

5 /2 0 dw θ5 

6 -/2 0 0 θ6 - /2 

7 -/2 0 0 θ7 

 

The workspace of the designed robot is given in 
Table 2.  

Table 2. Workspace ETS-MARSE. 

Joints Motion 
Workspac

e 

1 
Shoulder joint horizontal 

flexion/extension 
0°/140° 

2 
Shoulder joint vertical 

flexion/extension 
140°/0° 

3 
Shoulder joint internal/external 

rotation 
-85°/75° 

4 Elbow joint flexion/extension 120°/0° 

5 Forearm joint pronation/supination -85°/85° 

6 
Wrist joint 

Ulnar/radial deviation 
-30°/20° 

7 Wrist joint flexion/extension -50°/60° 

 

 
 

2. 2. Dynamics of ETS-MARSE Robot 
The dynamics of ETS-MARSE is expressed as 

follows: 

𝑀(𝜃)𝜃̈ + 𝐶(𝜃, 𝜃̇)𝜃̇ + 𝐺(𝜃) + 𝑓𝑑𝑖𝑠 = 𝜏 (1) 

where 𝜃, 𝜃̇, and 𝜃̈ ∈ ℝ7are respectively the joints 
position, velocity, and acceleration vectors, 𝑀(𝜃) ∈
ℝ7×7 , 𝐶(𝜃, 𝜃̇)𝜃̇ ∈ ℝ7, and 𝐺(𝜃) ∈ ℝ7 are respectively the 

symmetric positive-definite inertia matrix, the Coriolis 
and centrifugal vector, and the gravitational vector 
including the user’s arm and the exoskeleton arm. 𝜏 ∈ ℝ7 
is the torque vector, 𝑓𝑑𝑖𝑠 ∈ ℝ7 is the external 
disturbances vector. Without loss of generality, the 
dynamic model (1) can be rewritten as follows:  

{

𝑀(𝜃) = 𝑀0(𝜃) + ∆𝑀(𝜃)    

𝐶(𝜃, 𝜃̇) = 𝐶0(𝜃, 𝜃̇) + ∆𝐶(𝜃, 𝜃̇)

𝐺(𝜃) = 𝐺0(𝜃) + ∆𝐺(𝜃)   

 (2) 

where 𝑀0(𝜃), 𝐶0(𝜃, 𝜃̇), and 𝐺0(𝜃) are respectively 

the known inertia matrix, the Coriolis/centrifugal 
matrix, and the gravity vector. ∆𝑀(𝜃), ∆𝐶(𝜃, 𝜃̇), and 
∆𝐺(𝜃) are the uncertain parts. Let us introduce a new 

variable such that: 𝑧1 = 𝜃 and 𝑧2 = 𝜃̇; hence, the 
dynamic model expressed in Eq. 1 can be rewritten as 
follows: 

{
𝑧̇1 = 𝑧2                                                                     

𝑧̇2 = 𝑈(𝑡) + 𝑓(𝑡) + 𝐻(𝑡)                                    
 (3) 

where, 𝑈(𝑡) = 𝑈(𝑧1); 𝐻(𝑡) = 𝐻(𝑧1, 𝑧2, 𝑧̇2) and 
𝑓(𝑡) = 𝑓(𝑧1, 𝑧2). This notation is used to facilitate the 
handling of the control methodology with: 𝑈(t) =
𝑀0

−1(𝜃)𝜏(𝑡); 𝐻(t) = 𝑀0
−1(𝜃)(−𝑓𝑑𝑖𝑠 − ∆𝑀(𝜃)𝜃̈ −

∆𝐶(𝜃, 𝜃̇)𝜃̇ − ∆𝐺(𝜃)), and 𝑓(t) = 𝑀0
−1(𝜃)(−𝐶0(𝜃, 𝜃̇)𝜃̇ −

𝐺0(𝜃)). 
 

2.3. Problem Statement 
The developed approach aims to set up a new 

integral Second-Order Terminal Sliding mode control 
(ISOTSMC) to improve the performance of conventional 
second-order SMC and to ensure the finite-time 
convergence of the sliding surface. Since the dynamic 
parameters of the robot are unknown, the integration of 
TDE to estimate them ensures a desirable performance. 
The control strategy is developed to be able to complete 
the passive rehabilitation movement by obtaining a 
control input that forces the measured trajectory to track 
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the desired trajectory even if the robot operates with 
uncertain dynamics and unforeseen external 
disturbances. 

 Property 1: The known part of inertia matrix 
𝑀0(𝜃)  is symmetric and positive definite for all 𝜃 ∈ ℝ𝑛 
[2].  

Assumption 1: The function 𝐻(𝑡) is globally 
Lipschitz function. 

Assumption 2: The desired trajectory is bounded. 
Assumption 3: The external disturbance 𝑓𝑑𝑖𝑠 is 

supposed to be continuous, has finite energy, and 
satisfies ‖𝑓𝑑𝑖𝑠‖ ≤ 𝜀, with an unknown positive 
disturbance boundary 𝜀. 

 

3. Control Design 
The first step in the control development is to 

define the surface S in terms of position error. Then, 
select the integral terminal type of the sliding surface, 
where this later must be stable and guarantee the finite-
time convergence. Let us chose the integral terminal 
surface as follows: 

𝑆 = 𝜆1𝑒 + 𝜆2 ∫ |𝑒|𝛽𝑠𝑖𝑔𝑛(𝑒)
𝑡

0

 (4) 

where 𝑒 = 𝑧1 − 𝑧𝑑 is the position error and 𝑧1, 𝑧
𝑑 ∈ ℝ7 

is the measured and desired trajectory respectively, 
where 𝜆1 = 𝑑𝑖𝑎𝑔(𝜆1𝑖𝑖) > 0 , 𝜆2 = 𝑑𝑖𝑎𝑔(𝜆2𝑖𝑖) > 0 where 

𝑖 = 1,… , 7; and  
1

2
< 𝛽 < 1. Taking the first-time 

derivative of 𝑆, we find: 

𝑆̇ = 𝜆1𝑒̇ + 𝜆2|𝑒|
𝛽𝑠𝑖𝑔𝑛(𝑒) (5) 

Theorem 1: Considering the exoskeleton robot system 
(Eq. 3) that satisfies the mentioned properties and 
assumptions, the selected surface (Eq. 4) is stable and 
finite-time independently of the initial state.  

Proof: Let us consider the following Lyapunov 
function: 

𝑉𝑒 =
1

2
∑𝑒𝑖

2

7

𝑖=1

 (6) 

where 𝑉𝑒(𝑒0) is the initial value of the selected Lyapunov 
function. The time derivative of Eq. 6 can be obtained by: 

𝑉̇𝑒 = ∑𝑒𝑖𝑒̇𝑖

7

𝑖=1

 (7) 

Let us assume that 𝑆̇ = 0 is provided, from Eq. 5 we can 
obtain the following expression using scalar form as 
follows: 

𝑒̇𝑖 = −
𝜆2𝑖

𝜆1𝑖
|𝑒𝑖|

𝛽𝑠𝑖𝑔𝑛(𝑒𝑖); where 𝑖 = 1,… , 7 (8) 

Substituting Eq. 8 into Eq.7 we have: 
 

𝑉̇𝑒 = −∑
𝜆2𝑖

𝜆1𝑖
|𝑒𝑖|

𝛽𝑒𝑖𝑠𝑖𝑔𝑛(𝑒𝑖)
7
𝑖=1   

≤ −∑
𝜆2𝑖

𝜆1𝑖
(𝑒𝑖

2)
𝛽+1

2        7
𝑖=1   

           = −∑
2

𝛽+1
2 𝜆2𝑖

𝜆1𝑖
(𝑉𝑒)

𝛽+1

2           7
𝑖=1   

(9) 

where |𝑒𝑖| = 𝑒𝑖𝑠𝑖𝑔𝑛(𝑒𝑖). Therefore, 𝑉̇𝑒 ≤ 0 is verified. We 
can rewrite Eq. 9 as follows: 

𝑉̇𝑒 + ∑𝜗𝑉𝑒
𝜇

7

𝑖=1

≤ 0   (10) 

where 𝜗 =
2

𝛽+1
2 𝜆2𝑖𝑖

𝜆1𝑖𝑖
 and 𝜇 =

𝛽+1

2
, taking into 

consideration that 
1

2
< 𝛽 < 1 and 

3

4
< 𝜇 < 1. So, 

according to [15], the convergence of the finite time 𝑡𝑠 
can be given by: 

𝑡𝑠 =
𝑉𝑒

1−𝜇
(𝑒0)

𝜗(1 − 𝜇)
 (11) 

where 𝑉𝑒(𝑒0) is the Lyapunov function’s initial value. The 
proof is complete. 
Remark 1: It is obvious from Eq. 11 that the initial value 
of the Lyapunov function 𝑉𝑒(𝑒0) and the ratio 𝜆2𝑖 𝜆1𝑖⁄  
manage the finite time convergence 𝑡𝑠 of the selected 
sliding surface. A large value of 𝜆2𝑖 𝜆1𝑖⁄  can ensure a 
short convergence time. Likewise, too large gain ratio 
may produce an overshoot influence. Therefore, the 
trade-off between fast convergence and control 
performance is required to choose 𝜆1𝑖 and 𝜆2𝑖. 

While the selected surface is chosen, the 
combination of ISOTSMC with TDE can be easily making 
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up now. Let us take the second-time derivative of Eq. 5 
as: 

𝑆̈ = 𝜆1𝑒̈ + ∑𝛽𝜆2𝑖|𝑒|
𝛽−1𝑒̇𝑖

7

𝑖=1

 (12) 

Substituting Eq. 8 into Eq. 12, we obtain: 
 

𝑆̈ = 𝜆1(𝑈(𝑡) + 𝑓(𝑡) + 𝐻(𝑡) − 𝑧̈𝑑) −

                                        ∑
𝛽𝜆2𝑖

2

𝜆1𝑖
|𝑒|2𝛽−1𝑠𝑖𝑔𝑛(𝑒𝑖) 

7
𝑖=1   

(13) 

To solve Eq. 13, the integral terminal super-twisting 
controller is given as follows: 

𝑈(𝑡) = −𝑘1𝜆1|𝑆̇|
1

2𝑠𝑖𝑔𝑛(𝑆) + 𝑧̈𝑑 − 𝑓(𝑡) − 𝐻(𝑡)

+ ∑
𝛽𝜆2𝑖

2

𝜆1𝑖
2

|𝑒|2𝛽−1𝑠𝑖𝑔𝑛(𝑒𝑖) 

7

𝑖=1

 

(14) 

With 𝜏 = 𝑀0𝑈(𝑡), 𝑘1 = 𝑑𝑖𝑎𝑔(𝑘1𝑖𝑖) > 0, and 𝑘2 =
𝑑𝑖𝑎𝑔(𝑘2𝑖𝑖) > 0, where 𝑖 = 1,… , 7. 

Practically, as established, all dynamic parameters 
of the exoskeleton robot are not easily obtained due to 
the uncertainties and their variation during the robot’s 
tasks. Since 𝐻(𝑡) is uncertain it might influence the 
control proposition. From now on, we will consider 𝐻(𝑡) 
uncertain. If Assumption 1 is verified, we can used TDE 
[11] to estimate 𝐻(𝑡) as follows: 

𝐻̂(𝑡) ≈ 𝐻(𝑡 − 𝑡𝑑) = 𝑈(𝑡 − 𝑡𝑑) −   𝑓(𝑡 − 𝑡𝑑) − 𝑧̇2 (15) 

where, 𝑡𝑑 is a very-small time delay constant. Practically, 
the smallest constant that can be achieved in real time is 
the sampling period. According to the Lipschitz 
condition (Assumption 1), the time delay error can be 
calculated as follows: 

𝛥𝐻 = 𝐻(𝑡) − 𝐻̂(𝑡) =  𝐻(𝑡) − 𝐻(𝑡 − 𝑡𝑑) (16) 

where 𝜚 > 0 is the Lipschitz constant. 
Remark 2: It can be seen from Eq.16 that if Assumption 
2 is verified, the estimation error of the uncertainties and 
disturbances is always bounded by the Lipschitz 
constant. 
Theorem 2: Considering the exoskeleton robot system 
(Eq. 3) which satisfies the mentioned properties and 
assumptions, the control law of Integral Second-Order 

Terminal Sliding Mode Control incorporating TDE 
ensures the convergence of the sliding surface and its 
first and second derivative to zero in finite-time given by: 

𝑈(𝑡) = −𝐾1|𝑆̇|
1

2𝑠𝑖𝑔𝑛(𝑆) + 𝑧̈𝑑 − 𝑓(𝑡) − 𝐻̂(𝑡) +

                                                    ∑
𝛽𝜆2𝑖

2

𝜆1𝑖
2 |𝑒|2𝛽−1𝑠𝑖𝑔𝑛(𝑒𝑖) 

7
𝑖=1   

(17) 

where 𝐾1 = 𝑘1𝜆1 = 𝑑𝑖𝑎𝑔(𝐾1𝑖𝑖) > 0 and 𝐾2 = 𝑘2𝜆1 =
𝑑𝑖𝑎𝑔(𝐾1𝑖𝑖) > 0, where 𝑖 = 1,… , 7.  Whenever the 
following conditions are verified: 

𝐾1𝑖 > 2𝜚𝑖𝑡𝑑 , 𝐾2𝑖 >
𝜚𝑖 𝑡𝑑(𝐾1𝑖)

2 − 𝐾1𝑖
3

2(3𝐾1𝑖 − 2𝜚𝑖𝑡𝑑𝐾1𝑖)
 (18) 

Proof: Before selecting the Lyapunov function candidate, 
let us substitute the control law (Eq. 17) into Eq.13, we 
find: 

{ 𝑆̈ = −𝐾1|𝑆̇|
1

2𝑠𝑖𝑔𝑛(𝑆) + 𝜆1𝛥𝐻 + 𝑤

𝑤̇ = −𝐾2𝑠𝑖𝑔𝑛(𝑆)                                 
 (19) 

It can be seen that Eq. 19 has the same structure as the 
Super-Twisting control [8]. Let us now introduce new 
variables such that: 𝜂1 = 𝑆 and 𝜂2 = 𝑆̇. The system (Eq. 
19) becomes as follows:  

{

𝜂̇1 = 𝜂2                                                   

𝜂̇2 = −𝐾1|𝜂2|
1

2𝑠𝑖𝑔𝑛(𝜂1) + 𝜆1𝛥𝐻 + 𝑤 

𝑤̇ = −𝐾2𝑠𝑖𝑔𝑛(𝜂1)                                 

 (20) 

To ensure the convergence of the robot system 
(Eq. 3), we will assume the following Lyapunov function 
candidate: 

𝑉 = 𝛾𝑇𝑅𝛾 (21) 

where 𝛾 = [𝛾1𝑖, 𝛾2𝑖]
𝑇, 𝛾1𝑖 = (|𝜂2𝑖|)

1

2𝑠𝑖𝑔𝑛(𝜂1), 𝛾2𝑖 = 𝑤𝑖. 
The Lyapunov function (Eq. 21) is chosen to be 
continuous and non-differentiable at 𝑆𝑖 = 0  [16]. It is 
positive-definite and radially-bounded by choosing an 
appropriate matrix 𝑅 ∈ ℝ2×2 such that, 
 

𝑅 =
1

2
[
𝐾1𝑖

2 + 4𝐾2𝑖 −𝐾1𝑖

−𝐾1𝑖 2
] 

with,  
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𝛼𝑚𝑖𝑛{𝑅}‖𝛾‖2 ≤ 𝑉 ≤ 𝛼𝑚𝑎𝑥{𝑅}‖𝛾‖2 (22) 

where 𝛼𝑚𝑖𝑛{𝑅} and 𝛼𝑚𝑎𝑥{𝑅} are the minimum and 
maximum eigenvalues of {𝑅} and ‖𝛾‖ is the Euclidian 
norm of 𝛾. Taking the derivative of Lyapunov function 
(Eq. 21): 

𝑉̇ = 𝛾̇𝑇𝑅𝛾 + 𝛾𝑇𝑅𝛾̇ (23) 

The time derivative of 𝛾 can be defined as follows: 

{
𝛾̇1𝑖 =

1

2|𝜂2𝑖|
1

2

𝜂̇2𝑖                

𝛾̇2𝑖 = 𝑤̇𝑖  ; 𝑖 = 1,… ,7         

   (24) 

Using Eq.20 and Eq. 24, we can rewrite 𝛾 ̇ in matrix form, 

where |𝛾1𝑖| ≤ |𝜂2𝑖|
1

2 : 

𝛾̇ =
1

|𝛾1𝑖|
[

−𝐾1𝑖

2

1

2
−𝐾2𝑖 0

] [
𝛾1𝑖

𝛾2𝑖
] +

1

|𝛾1𝑖|
[
𝜆1

2
0

]∆𝐻𝑖 (25) 

The above equation can be written in the form: 

𝛾̇ =
1

|𝛾1𝑖|
(𝐴𝑠𝛾 + 𝐵𝑠∆𝐻𝑖) (26) 

where, 𝐴𝑠 = [
−𝐾1𝑖

2

1

2

−𝐾2𝑖 0
] ; 𝐵𝑠 = [

𝜆1

2

0
]. Substituting Eq. 26 

into Eq. 23, we find: 

𝑉̇ =
1

|𝛾1𝑖|
𝛾𝑇(𝐴𝑠

𝑇𝑅 + 𝑅𝐴𝑠)𝛾 +
2

|𝛾1𝑖|
∆𝐻𝑖𝐵𝑠

𝑇𝑅𝛾 (27) 

 
Since 𝜚𝑖𝑡𝑑 is positive from Eq. 16. The following 
inequality can be established: 2∆𝐻𝑖𝐵𝑠

𝑇𝑅𝛾 ≤ 𝜚𝑖𝑡𝑑𝛾𝑇𝑀𝛾, 
where: 
 

𝑀 =
1

2
[
𝐾1𝑖

2 + 4𝐾2𝑖

−1

2
𝐾1𝑖

−1

2
𝐾1𝑖 0

] 

 
Therefore Eq.27 becomes as: 

𝑉̇ ≤
1

|𝛾1𝑖|
𝛾𝑇(𝐴𝑠

𝑇𝑅 + 𝑅𝐴𝑠 + 𝜚𝑖𝑡𝑑𝑀)𝛾  (28) 

 The above Eq. 28 can be rewrite as follows: 

𝑉̇ ≤
1

|𝛾1𝑖|
𝛾𝑇𝐷𝛾 (29) 

where 𝐷 is written such that 𝐷 = −(𝐴𝑠
𝑇𝑅 + 𝑅𝐴𝑠 +

𝜚𝑖𝑡𝑑𝑀), and 𝐷 is calculated such that: 
 

𝐷 =
−𝐾1𝑖

2
[
 
 
 𝐾1𝑖

2 + 6𝐾2𝑖 − 𝜚𝑖𝑡𝑑(𝐾1𝑖 + 4
𝐾2𝑖

𝐾1𝑖
)

1

2
𝜚𝑖𝑡𝑑 − 𝐾1𝑖

1

2
𝜚𝑖𝑡𝑑 − 𝐾1𝑖 1 ]

 
 
 
 

 
The function V̇ is negative definite if  𝐾1𝑖 > 2𝜚𝑖𝑡𝑑 , 𝐾2𝑖 >
𝜚𝑖𝑡𝑑(𝐾1𝑖)

2−𝐾1𝑖
3

2(3𝐾1𝑖−2𝜚𝑖𝑡𝑑𝐾1𝑖)
 . This selection will ensure that the 

  det (𝐷) > 0. While 𝐷 is positive and symmetric. In such 
case, we can rewrite Eq. 29 as: 

𝑉̇ ≤
−1

|𝛾1𝑖|
αmin{D}‖𝛾‖2 (30) 

where 𝛼𝑚𝑖𝑛{𝐷}  is the minimum eigenvalue of 𝐷. Eq. 30 
proves that Lyapunov function is semi-negative definite. 
Now, let us prove the finite time convergence of the 
system. From Eq. 22, we have: 

𝑉
1

2

𝛼𝑚𝑎𝑥

1

2 {𝑅}

≤ ‖𝛾‖2 ≤
𝑉

1

2

𝛼
𝑚𝑖𝑛

1

2 {𝑅}

 (31) 

 
It is clear that: |𝛾1𝑖| ≤ ‖𝛾‖ and from Eq. 30 and Eq. 

31, we have: 

𝑉̇ ≤
−1

|𝛾1𝑖|
αmin{D}‖𝛾‖2 ≤

αmin{D}

𝛼𝑚𝑎𝑥

1

2 {𝑅}

 (32) 

According to this equation, the finite time convergence of 
the sliding surface can be obtained such that: 

𝑇𝑠 =
2𝛼𝑚𝑎𝑥

1

2 {𝑅}

αmin{D}
𝑉

1

2(𝛾(0)) 
(33) 
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The diagram block of the proposed controller is given in 
Fig.2. 

 
Figure 2. Diagram block of the proposed controller. 

 

4. Experiment and Comparative Study 
The robot system consists of three processing 

units, the first is a PC where the top-level commands are 
sent to the robot using a LabVIEW interface, i.e. the 
control scheme selection. This PC also receives the data 
after the robot task is executed to analyze its 
performance. The other two processing units are part of 
a National Instruments PXI platform. Firstly, a NI-PXI 
8081 controller card with an Intel Core Duo processor; 
in this card, the main operating system of the robot and 
the top-level control scheme are executed. In our case, 
the ISOTSMC based controller as well as the estimation 
based on time delay approach, at a sampling time of 
500µs. Finally, at input/output level, a NI PXI-7813R 
remote input/output card with a FPGA (field 
programmable gate array) executes the low-level 
control; i.e. a PI current control loop (sampling time of 
50 µs) to maintain the current of the motors required by 
the main controller. Also, in this FPGA, the position 
feedback via Hall-sensors (joint position) and basic 
input/output tasks are executed. Each joint of the ETS-
MARSE is powered by a brushless DC motor (Maxon EC-
45, EC-90 ) combined with harmonic drives (gear ratio 
120:1 for motor-1, motor-2, and motor-4 and gear ratio 
100:1 for motor-3 and motors 5–7). The General 
schematic of the experimental architecture is depicted in 
Fig. 3. 

 

 
Figure 3. General schematic of the experimental architecture. 

 
An experiment session was created to validate the 

proposed control approach. It consists on an exercise 
performed with a healthy subject with an age of 30 years, 
height of 177 cm, and weight of 75 Kg. In this case, the 
trajectory is repeated three times for each movement 
with the speed varying between (28 deg/sec for joint-3 
and 48 deg/sec for the remaining joints). The results of 
the task are illustrated in Fig. 4. A Second exercise is 
given in cartesian space as rectangular form(Initial 
position to Target-A forward to Target-B Target-C then 
return to Initial position). The initial position of the robot 
is given with the elbow joint position at 90 degrees. The 
control gains are chosen manually as follows: 𝜆1𝑖 = 2.5, 
𝜆2𝑖 = 12.5; 𝑘1 = 18, 𝑘2 = 10, 𝛽 = 0.6. 

 
4. 1. Joint space results 

We can appreciate in Fig. 4 that for the movement 
of all joints, the desired trajectory (represented by the 
red line), practically overlaps the measured trajectory 
(represented by the solid blue line). It is clear from the 
plots in this figure that the proposed controller provides 
an excellent performance. Where, the controller has the 
potential to maintain stability of the system along the 
designed therapeutic movement with a position error 
(second column of Fig. 2) less than three degrees for all 
joints. The last column of Fig. 2 shows the control input 
which is clearly smooth and without the chattering 
effect. We can conclude that the controller is robust; it 
offers a very good performance despite the high speed 
and unknown parameters of the robot. 
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Figure 4. Performance of the ETS-MARSE robot with 

subject-A in joint space. 

 

4. 1. Cartesian space results 
In order to maneuver the exoskeleton in Cartesian 

space, we used the inverse Jacobian matrix method, since 
the proposed control is executed in the joint space. Due 
to the redundant nature of the ETS-MARSE robot where 
its Jacobian matrix is not quadratic, the inverse 
kinematics can be solved using the pseudo-inverse of the 
Jacobian, which can be expressed as follows: 

{
𝑧̈𝑑 = 𝐽+𝑥̈𝑑 − 𝐽+𝐽𝐽̇+𝑥̇𝑑

𝑧̇𝑑 = 𝐽+𝑥̇𝑑                      
 (34) 

where 𝑥𝑑 ∈ 𝑅6×1 is the desired Cartesian position and 
orientation vector of the end-effector, and 𝑥̈𝑑 , 𝑥̇𝑑 ∈
𝑅6×1 are the Cartesian desired acceleration and velocity 
vectors, respectively. 𝜃̈𝑑 , 𝜃̇𝑑 ∈ 𝑅7×1 are the calculated 
joint acceleration and velocity respectively,  and 𝐽+ =
𝐽𝑇(𝐽𝐽𝑇)−1 is pseudo-inverse generalized. The proposed 
joint-space based control in this paper does not need a 
Jacobian matrix or inversion of a Jacobian matrix, as for 
a Cartesian space-based controller. The role of the 
Jacobian matrix and its inverse here is the generation of 

the desired rehabilitation trajectory. Hence, the 
singularity is not an issue in this case. Moreover, the 
singularities of the exoskeleton robot are known to us; 
they will appear when the ETS-MARSE is straight down 
(θ2 = 0°, and/or θ4 = 0°, and/or θ6 = −90°). As well, a 
singularity will happen when the axes of rotation of 
joint-1 (Z1), and joint-3 (Z3), and/or joint-5 (Z5), and/or 
joint-7 (Z7) are aligned with each other. By knowing 
these cases, we can easily define the trajectory by 
avoiding all kinematics singularities. 

 
 

Figure 5. Performance of the ETS-MARSE robot with 

subject-A in Cartesian space. 
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Figure 6. The evolution of Cartesian error. 

 

 
 

Figure 7. The evolution of control inputs. 

 
It is obvious from (Figs.5-7) performed by subject-

A, the controller provides satisfactory results with small 
errors (Fig.6) of position and acceptable control input 
(Fig.7). Where, the controller forces the performed 
trajectory to converge to the desired trajectory. These 

results reflect the robustness of the proposed control 
with unknown dynamics model of the robot and in 
presence of variable or unexpected external 
disturbances (physiological condition of the subject-A). 

To show more of the feasibility of the designed 
strategy, we propose a numerical comparison between 
the above controllers (conventional controller and 
proposed controller) by calculating the root mean 
square (RMS) of the error and the control input of each 

controller as follows: ‖𝑒‖ 𝑅𝑀𝑆 = √
1

𝑁
∑ ‖𝑒‖2𝑁

𝑖=1  and 

‖𝜏‖ 𝑅𝑀𝑆 = √
1

N
∑ ‖𝜏‖2N

𝑖=1 , where N is the number of 

samples of the signals, corresponding with the time steps 
of the trial. The evaluation of the controller is given in 
Table 3. 

 
Table 3. Controllers evolution. 

Controller RMS (error) RMS (Torque) 
ISOTSMC 0.0150 2.0728 
SOSMC 0.0988 3.2147 

 
It is clear from Table 3 that the proposed 

controller achieves an excellent performance with small 
value of overall RMS error, compared with the 
conventional SOSMC, even the dynamic model of the 
exoskeleton is not completely known, and in presence of 
external forces. 
 

5. Conclusion 
In this paper, we investigated the control applied 

to passive rehabilitation protocol of an exoskeleton 
robot by presenting a new integral second-order 
terminal sliding mode incorporating time delay 
estimation. Using second-order sliding mode is due to its 
attractive characteristics of fast convergence, accuracy, 
and attenuation of chattering. However, its problem is 
that the unknown dynamic of the exoskeleton robot and 
external disturbances can be amplified by the second 
derivative of the sliding surface, which leads to 
instability of the robot system. Applying TDE to estimate 
the unknown dynamics and external disturbances 
permits chattering reduction.  

The proposed controller presents an excellent 
performance both joint and Cartesian spaces. These 
results are confirmed by the small tracking errors as 
shown in Table 3.  
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The controller is dedicated to improve the 
robustness of the second-order sliding mode control 
while overcoming its main limitation. Where, the 
proposed control deals very well with the unknown 
dynamic and external payload presented by the subject’s 
arm. The stability analysis is formulated and 
demonstrated based on Lyapunov function. An 
experimental physiotherapy session with a healthy 
subject was created to test the effectiveness and 
feasibility of the proposed control, which are proved. 
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